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1.0 Introduction 

Given a new protein sequence, scanning existing protein databases for similar sequences is becoming an 

important and repeated task in bioinformics.  Initially, the Smith-Waterman [1] algorithm was developed 

to find local, optimal matches between an input sequence and a given database of existing protein 

sequences.   The Smith-Waterman algorithm uses a recursive algorithm (dynamic programming) to 

perform the search.  Unfortunately, the algorithm is too compute intensive and has an execution time 

that is quadratic with respect to the length of protein sequences [2].   

As the sequencing rate for new proteins increased, the need for a faster alignment tool became 

apparent, and a heuristic-based algorithm was a potential direction.   The BLAST algorithm is such a 

heuristic-based algorithm, and it is based on the assumption that good alignments contain short, high 

scoring matches. In addition to more efficient algorithms, more efficient computational devices are 

needed as traditional CPUs are reaching their limits of performance and power scaling, while GPUs 

continue to offer a significant and increasing peak GLOPs and GLOPS/Watt as compared to CPUs.  This 

paper analyzes several implementations of the BLASTP algorithm. The goal is to understand the current 

algorithmic bottlenecks on the GPU and then to briefly examine potential areas of improvement. 

This paper is organized as follows.  Section 2 gives an overview of the BLASTP algorithm, and section 3 

briefly describes the NVIDIA GPUs that are used to implement the BLASTP algorithm.  Next, section 4 

describes three recent GPU implementation of the BLAST algorithm, and section 5 does a deep dive into 

one of the three algorithms. Then, given this background knowledge, section 6 examines the 

performance of this algorithm on a current NVIDIA GPU (GTX 680).  Finally, section 7 will provide some 

thoughts on potential improvements, and section 8 will conclude. 

2.0 BLASTP 

As noted above, the Basic Local Alignment Searching Tools for Proteins (BLASTP) is an algorithm that is 

based on the observation that good alignments typically have short matches, but given that the 

algorithm is an approximation (heuristic) is it possible for it to miss optimal alignments that algorithms 

such as Smith-Waterman would have identified. The BLAST algorithm has four stages [3]: 

1) Hit (word match) Detection 

2) Ungapped Extension 

3) Gapped Alignment 

4) Gapped Alignment with traceback 



The figure below gives an example of the first three stages [3]. 

 
Figure 1: BLASTP Example 

In this example, the query sequence is compared to the subject sequence.  In stage 1 (Hit Detection), the 

exact match of the sequence “IYP” is identified.  In stage 2, ungapped extension is performed on pairs of 

high-scoring segment pairs (HSPs).  In this example, the ungapped extension extends the initial match in 

both directions.  In stage 3, the ungapped extension is extended using a gapped alignment.  Both stage 2 

and stage 3 use a scoring matrix and threshold to determine the extent of the alignment. In the final 

stage, a traceback algorithm is used to generate and score the alignments.    

The figure below provides more details of the process [4].  In stage 1, short, matches are identified 

(black lines in the left figure).  In stage 2, matches along the same diagonal are extended (non-gapped) if 

the resulting score exceeds a specified threshold. The extensions are shown as grey lines in the left 

figure.  Next, stage 3 extends (typically using Smith-Waterman) the non-gapped sequences using gapped 

alignment, as shown by the grey line in the right figure.  Finally, stage 4 generates and scores the 

sequence for the end user using alignment traceback algorithms.   

 

Figure 2: BLASTP Example 

3.0 GPU Architecture 

3.1  Architecture Overview 

As noted above, GPUs offer a potential performance advantage over existing CPUs, as they offer higher 

peak GFLOPS and are more power efficient (GLOPS/Watt).  The NVIDIA GPU consists of a number of 

Streaming Multiprocessors (SM), of which pairs are grouped into a GPC block, as shown in the figure 

below.  The four GPC blocks are connected to a distributed, 512KB L2 cache, and the L2 cache is 



connected to four memory controllers.  The green blocks in the diagram represent the individual 

computation engines within the SMs.  

Details of the architecture can be found in the GK104 white paper [5]. 

 

Figure 3: NVIDIA GTX 680 GPU 

3.2  Performance Characteristics 

Within each SM, warps of 32 threads are executed using a Single Instruction, Multiple Thread (SIMT) 

model.  In this model, peak performance is obtained when both the control flow and the memory 

accesses are converged.  That is, when the threads within a warp execute the same instruction and 

generate well behaved memory accesses (same word across the thread or adjacent words, for example) 

peak performance is obtained.  If either the control or memory streams diverge, then performance is 

diminished.   Management of this divergence along with data placement is critical to performance, but 

understanding divergence is a difficult problem and is for the most part ignored in the existing literature 

analysis of CUDA implementations of BLASTP.   

In addition to managing the divergence, data placement is also critical to performance.  Within a CUDA 

application, data may be placed in global memory, shared-memory, constant memory or texture 

memory.  Global memory is persistent and accessible to all threads of a given application. Shared-

memory is accessible to threads within a thread block and has a lifetime of the threads within the block.  

Shared memory is a local, high-bandwidth and low latency memory store.  Constant memory and 

texture memory are read-only memory structures that provide cached data access.  The data bandwidth 

of the texture memory tends to be much higher than that of global memory or constant memory. The 

performance section of this paper will examine how data placement can impact performance. 

4.0 GPU Approaches 

This investigation examined three GPU implementation of BLASTP: 

1) GPU-NCBI-BLAST  [6] 



2) CUDA-BLASTP [2] 
3) GPU-BLASTP [3] 

As highlighted in all three implementation, the data structure used to enable the initial short word 

match (essentially an optimized lookup table) is critical to performance.  Also, each implementation uses 

the same methodology to presort the database by subject sequence length, which allows blocks of 

similar length subject sequences to be concurrently scanned by the GPU. The goal of the sort is to 

minimize difference in the execution time of the concurrent GPU threads.    

Section 4 and 5 will focus on the characteristics of CUDA-BLASTP.    The analysis will examine the key 

characteristics of the implementations, as described in the respective papers.  Comparing the 

performance data from the papers is difficult, as the system configurations, subject sequences and 

query sequences are different in each case. The source code of GPU-BLASTP, which is the most recent 

and highest performing implementation, was not publically available. 

4.1  GPU-NCBI-BLAST 

One goal of the GPU NCBI-BLAST implementation is that the results of the algorithm exactly match those 

produced by the NCBI-BLAST tool
1
, and as a result of this goal, the GPU implementation is built on top of 

the NCBI-BLAST code base. The implementation focuses on the first two steps of the BLAST algorithm, as 

the authors observe that these two steps consume over 75% of the execution time, and the authors 

claim a 4x speedup from their GPU implementation over a single-thread CPU implementation of NCBI-

BLAST.  [6] 

The algorithm preprocesses the query sequence and generates a query-index table – a form of lookup 

table. The table stores how many time each word is found in the query and the location of the word in 

the sequence.    The query-index table holds the location of the first three occurrences of a word and 

has the ability to overflow into secondary structure if more occurrences are found.  This query-index 

table is stored in global memory due to its size, but the information that specifies if a word is found in 

the query sequence (the presence bits) is extracted from the table and stored in shared-memory.  The 

query sequence is stored in constant memory, and the database sequences are stored in global 

memory.  The figure below illustrates this organization [6]. 

The detailed organization of the data structures and how they are walked by the algorithm is not 

described in the paper, but the presences bits and the query-index table are likely indexed by the w-mer 

that is currently being scanned.  
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 How important is it for the implementation to match the NCBI-BLASTP results? 



 

 

Figure 4: GPU-BLAST Data Organization 

The algorithm proceeds as follows.  First, each thread scan consecutive words of a subject sequence and 

checks the presence bits to determine if a match is found.  Given the presence bits are stored in shared-

memory, this operation is very efficient.   For matches, ungapped extensions are performed using a 

substitution matrix stored in shared-memory and a scoring threshold.  The CPU, in parallel, to the GPU 

also processes a set of subject sequences rather than wait for the GPU to complete. The gapped 

extension and traceback steps are performed on the CPU using the existing NCBI-BLAST implementation.   

4.2  CUDA-BLASTP (Liu) 

As with GPU-NCBI-BLAST, one of the key focus areas for this algorithm is data structure design.  In this 

implementation, a compressed deterministic finite state automaton (DFA) is used to store the word 

match information for the query sequence, and this query sequence information is preprocessed on the 

CPU.  The DFA structure is essentially an optimized table lookup structure that for a given state (based 

on a pair of sequence characters) returns the next state, a pointer to a secondary structure that provides 

word hit information (hit or miss) and pointers to the location in the sequence for the word.  The DFA is 

similar, but not identical to the DFA structure presented in FSA-BLAST [4]. Figure 5 below shows the data 

structures. 
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Figure 5: CUDA-BLASTP DFA 

In a simple word lookup table, each w-mer (W = 3 in this investigation) is used to index into a large 

lookup table.  With an alphabet of length A, the table size would be A
3
.  The CUDA-BLASTP optimizes this 

structure by only storing a prefix of length w-1.   The DFA[i].nextWord pointer points to an additional 

vector of length A that used to hold hit information and subsequently points to sequence locations.    

These optimizations can significantly reduce the size of the table when the table is sparse. 

The DFA next state information is stored in constant memory, and the remaining portions of the DFA 

and the subject sequences are stored in texture memory.   

Stages 1-3 of the BLASTP algorithm are implemented on the GPU, and stage 4 is implemented on the 

CPU.  As with the previous algorithm, the subject sequences from the database are sorted, and batches 

of similar length sequences are processed on the GPU sequentially.  Stages 1-2 are combined into a 

single kernel invocation, and stage 3 implements the Smith-Waterman alignment algorithm using a 

second kernel on the GPU. 

The flow of the algorithm is as follows.  Each thread reads a subject sequence and uses the DFA to 

identify word hits.  For each hit, ungapped extension is performed if an additional match has already 

been identified along the diagonal and is within a specified threshold distance.  After all subject 

sequences are processed, the hit information is returned to the CPU for post processing.  Afterwards, 

the information is returned to the GPU to execute stage 3 – gapped extension using Smith-Waterman.  

Finally, the results are returned to the CPU for stage 4 calculations (traceback) and final output 

formatting. 

As for performance, the authors claim roughly a 10x speedup over a NCBI-BLAST implementation on a 

single CPU thread, but this algorithm does not guarantee that its results will match that of an identical 

search performed by NCBI-BLAST.  Section 4 of this paper will examine the performance of this 

algorithm in more depth.   
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4.3 GPU-BLASTP (Xiao) 
The third GPU implementation of BLAST is GPU-BLAST [3]. As with CUDA-BLAST, the first two stages of 

the BLASTP algorithm are combined into a single kernel, and the flow of the algorithm is almost identical 

to that used in CUDA-BLAST.  Although the authors did explore two additional ideas – two-level results 

buffering and load balancing.  In CUDA-BLAST a fixed sized results buffer is used, while GPU-BLAST 

implements a two-level buffer scheme in which each thread is given a small, fixed sized results buffer 

and a mechanism to spill over into a common shared buffer.    For load balancing, GPU-BLASTP uses a 

work queue structure to allow threads to obtain the next subject sequence to scan.  A DFA, which is also 

based on the FSA-BLAST [4] scheme, is used to hold the word lookup table. 

In addition to examining load balancing, this work also examinations the performance impact of using 

different GPU memory types to hold the data structures.   For the memory types, the paper examines 

both constant memory and texture memory to hold subject sequences, word lookup tables and scoring 

matrices.  The authors found that the best performance for stage 1 and 2 is typically obtained when the 

subject sequences and the word lookup table are stored in texture memory.   

4.4  Summary 

Overall, the three implementations are very similar.  They all focus on implementing stages 1 & 2 on the 

GPU, as these stages are the bulk of the execution time for the algorithm.  All three approaches focus 

the majority of the effort on data structure design and placement.  Unfortunately, the performance 

numbers are difficult to compare as the system configurations and test sequences are not identical, but 

a rough estimation of performance would indicate that GPU-BLASTP is 2x faster than CUDA-BLASTP, and 

that CUDA-BLASTP is roughly 10x faster than GPU-NCBI-BLASTP.   The next section will provide a detailed 

description of the CUDA-BLASTP implementation, and section 6 will examine the resulting performance 

under a number of configurations. 

5.0 GPU Implementation of CUDA-BLASTP 

As noted above, the CUDA-BLASTP implementation consists of four stages of which stage 1 and stage 2 

are combined into a single CUDA kernel (Blast_Kernel), stage 3 is implemented with a single CUDA 

kernel (sub_based_SW) and stage four is performance on the CPU.  In addition, the database is initially 

sorted by sequence length to improve GPU load balance, and then divided into smaller blocks, as shown 

in the figure below. The goal of the sorting is to attempt to minimize the variations in thread execution 

time, although execution time is dependent on both the subject sequence length and the number of hits 

identified and extended.   



 

Figure 6: Database Sorting and Batching 

5.1  Execution Timeline 

The figure below shows an example execution timeline for the CUDA-BLASTP implementation.  The 

three rows of interest in the figure are MemCpy (HtoD), MemCpy (DtoH) and Compute.  The MemCpy 

blocks are the memory copies from Host (CPU) to Device (GPU) or Device to Host.  The Compute row 

represents the kernel execution.  Initially, the DFA structure and scoring matrix are copied to the GPU, 

and then a batch of the subject sequences are copies to the GPU. Next, the GPU executes stage 1 and 2, 

and the results are copied back to the CPU.  Finally, the CPU post-processes the resulting hit data and 

copies the high scoring hits back to the GPU where the GPU executes the second kernel, which uses the 

Smith-Waterman algorithm to perform gapped alignment.   

As shown in the timeline, the data copies consume a large fraction of the execution time compared to 

the blast kernel (stage 1 and 2).  The stage 3 (Smith-Waterman gapped alignment) takes a negligible 

amount of time.  The figure highlights the processing of the second batch of subject sequences. 

 

Figure 7: Example CUDA-BLASTP Execution Timeline 

5.2  Data Structures 

CUDA-BLASTP has several key data structures, as shown in the table below.  The first, and most 

important, is the DFA implementation of the word lookup table, which was shown in Figure 5.   As 

shown in the table below, the actual implementation of the DFA is split into two components – the next 
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state information and the next word information.   In all experiments, an alphabet size of 20 and a word 

length of 3 are used. 

Structure Information Held Organization  Location 

DFA[i].next Next state for the DFA Vector[20 * 20] Constant Memory 

DFA[state][i].nextWord Pointer to hit information 2D Array[20 * 20][20] Texture Memory 

CurrentBlock[state] Hit information and pointer 

to sequence indexes 

2D Array[20 * 20][20] Texture Memory 

querySequences Sequence indexes Vector[variable] Texture Memory 

Table 1: CUDA-BLASTP Data Structures 

The DFA is used as follows.  First, the next state and next word entries are read using the current state 

(state) and the current subject sequence character (i).  If the next word entry is non-zero, then a hit has 

been found.  Otherwise, the state moves to the next state, and the process repeats until the input 

subject sequence has been exhausted.  For a hit, the current block and query sequence information is 

read.  This information is used to determine if an ungapped extension should be performed. 

5.3  GPU Kernels 

As noted above, the implementation uses two CUDA kernels - the first to perform stage 1 and 2 of the 

BLASTP algorithm (hit detection and ungapped extension), and the second kernel to perform stage 3 

(gapped extension).   As suggested above and will be quantified below, the second kernel consumes a 

negligible amount of time; and therefore, the focus of the analysis will be on the first kernel 

(Blast_Kernel). 

The Blast_Kernel consists of several phases, as listed below.  Initially, the kernel executions a small 

amount of initialization code (Kernel Initialization). Next, the kernel loops through each sequence 

assigned to the thread (Sequence Processing). As part of this sequence processing, the kernel performs a 

small amount of initialization work (Sequence Initialization), and then it loops through the subject 

sequences (Sequence Scanning) looking for hits (Hit Check). If a hit is identified, it is processed (Hit 

Processing) and potentially extended (Hit Extend). 

1. Kernel initialization 

2. Sequence Processing 

2.1. Sequence Initialization 

2.2. Sequence Scanning 

2.2.1.      Hit Check 

2.2.1.1. Hit Processing 

2.2.1.1.1. Hit Extend 

The majority of the execution time will be shown to be in the Hit Check portion of the Blast_Kernel.    



6.0 Performance Analysis 

6.1  Protein Sequences and Databases 

To examine the performance of this implementation, five query sequences of various lengths are used, 

and the table below provides the length information for the sequences
2
.     

Sequence  Length 

P14144  127 

P42018  254 

Q52TG9  517 

Q52KR2  1054 

P08678  2026 

Table 2: Query Sequence Lengths 

Both the swissprot and the env_nr protein sequence databases from NCBI were used as the scanned 

database, although the majority of the performance results will use the larger env_nr database.  

The table below shows the BLASTP parameters used in the study. These values are the default values for 

CUDA-BLASTP. 

Parameter Description Value 

Word Size 3 

Drop-off value for ungapped extension 7 

Drop-off value for gapped extension 15 

Drop-off value for triggering gaps 22 

Drop-off value for final gaped extension 25 

Open Gap Penalty 7 

Extension Gap Penalty 1 

Table 3: BLASTP Parameters 

6.2  GPU Specification 

The GPU used was a GTX680, which has the characteristics shown in the table below.  

GTX680  

Number SM 8 

Warp Size 32 threads 

Threads per SM 2048 

Total L2 Size 512 KB 

Table 4: GTX 680 Specifications 

6.3  Initial Results 

As noted above, the execution consists of two basic components – CUDA kernel execution and data 

movement (MemCpy) – in addition to the CPU processing.  The table below shows the relative 

percentage of execution time that each of these components consumes across the 5 query sequences 
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 These are the same 5 sequences used by Liu in the CUDA-BLASTP evaluation. 

 



under study.  The first table shows the result when scanning the smaller, swissprot database, and the 

second table shows the results when scanning the env_nr database.   

 

 

 

env_nr Database P14144 P42018 Q52TG9 Q52KR2 P08678 Ave 

MemCpy HtoD 15.2% 14.9%  11.3% 11.5% 13.2% 

MemCpy DtoH 20.8% 20.3%  13.4% 20.7% 18.8% 

CUDA_Blast_kernel (...) 63.9% 64.8%  71.8% 66.7% 66.8% 

sub_based_SW (...) 0.0% 0.0%  3.5% 0.9% 1.1% 

Table 6: CUDA-BLAST Execution Timeline Breakdown Scanning nr Database 

The Q52TG9 query sequence caused the program to crash for unknown reasons when using the env_nr 

database. 

As shown in the two tables above, the CUDA Blast_Kernel consumes the majority of the execution 

time, and the sub_based_SW kernel consumes a negligible amount of time.  For the smaller swissprot 

database in table 5, the data movement consumed a significant amount of the execution time (47.3%) 

compared to the computation phases (52.5%), but as the size of the data base increases, the overhead 

decreases as shown in Table 6 for the env_nr database – 32% data movement vs. 67.9% computation. As 

noted above, the MemCpy HtoD is mainly the copy of the database sequences to the GPU, and the 

MemCpy DtoH is the copy of the results from the GPU to CPU.   For this initial investigation, the focus 

will be on the analysis of the CUDA Blast_Kernel, but the final section of the paper will discuss 

possible future work to address the data movement overhead.  

6.4  Blast_Kernel Execution. 

As described above, the CUDA Blast_Kernel combines both stage 1 (hit detection) and stage 2 

(ungapped extension) of the BLASTP algorithm.   The table below shows the basic statistics for stage 1 

and 2 for a single thread of the execution when the env_nr data based is scanned for the five query 

sequences under study.   As noted above, the Q52TG9 scan terminated prematurely, but the relative 

statistics are likely still valid. 

env_nr P14144 P42018 Q52TG9 Q52KR2 P08678 

Sequences 2961 2961 1918 2961 2961 

Bases 1132719 1132719 1006105 1132719 1132719 

Hits 82167 118555 246832 449644 647022 

Extensions 1442 1365 6708 9971 18780 

Table 7: Blast_Kernel Computation Breakdown 

swissprot Database P14144 P42018 Q52TG9 Q52KR2 P08678 Ave 

MemCpy HtoD 21.4% 19.7% 18.7% 14.3% 11.5% 17.1% 

MemCpy DtoH 36.0% 35.7% 32.8% 25.8% 20.7% 30.2% 

CUDA_Blast_kernel (...) 42.3% 44.4% 47.7% 57.8% 66.7% 51.8% 

sub_based_SW (...) 0.1% 0.0% 0.6% 1.9% 0.9% 0.7% 

Table 5: CUDA-BLAST Execution Time Breakdown Scanning swissprot Database 



As expected, the number of hits and extensions tends to grow with the length of the query sequence.  

The following table shows a very rough breakdown of the execution time of the Blast_Kernel.
3
 The 

first two rows show the percentage of subject sequences that resulted in a hit and an ungapped 

extension. The subsequent rows show the execution time breakdown of the components of 

Blast_Kernel, as described in Section 5.3. 

nr P14144 P42018 Q52TG9 Q52KR2 P08678 Ave 

Hits (%) 7% 10% 25% 40% 57% 28% 

Extensions (%) 0% 0% 1% 1% 2% 1% 

Kernel Init Time 0% 0% 0% 0% 0% 0% 

Sequence Init Time 3% 3% 2% 2% 1% 2% 

Hit Check Time 93% 92% 82% 68% 51% 77% 

Hit Process Time 4% 5% 15% 29% 46% 20% 

Hit Extend Time 0% 0% 1% 1% 2% 1% 

Table 8: Blast_Kernel Execution Time Breakdown 

As shown in the table, the Hit Check processing portion of the kernel consumes the majority of the 

execution time, and the hit processing time grows as the number of hits in a given subject sequence 

increases.  The execution time of the kernel initialization (Kernel Init), the subject sequence initialization 

(Sequence Init) and the ungapped extension time (Hit Extend) are negligible and will not be examined in 

this work. 

The Hit Check step consists of reading the next character in the subject sequence, determining if the end 

of the subject sequence has been reached, and reading the next state and next word information from 

the DFA data structure.   If a hit is found, then the hit process step consists of reading the current block 

and sequence offset information and determining if a previous hit on the same diagonal is within a 

distance threshold.   

The work performed by the HitCheck phase of the kernel is shown in pseudo-code below. 

address = starting location of sequence in database 

while (! End of sequence) { 

 letter = Tex_Read_Subject[address]; 

 // currentWord = DFA[state][letter].nextWord 

 currentWord = Tex2D_Read_DFA[letter][currentGroup].nextWord 

 // nextGroup = DFA[state + letter] 

 nextGroup = Constant_Read_DFA[currentGroup + letter].nextGroup 

  if (currentWord) 

   Process/Extend Hit 

 } 

 

The loop consists of two texture reads, a constant read and the necessary address calculations.   Section 

7 will examine alternative data placement for these two structures. The key to improving performance 
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 The NVIDIA performance analysis tools only provide a way to measure total wall clock time of various segments 

of a running kernel, and given that multiple threads are time slicing the SM execution units, the runtimes are 

pessimistic.  In this analysis, I assume that the time slicing interference is roughly equal across all threads and 

therefore, the percentage breakdown of a kernel execution time is roughly correct. 



of this algorithm on GPUs is to optimize this step of the algorithm and the data movement phases, as 

mentioned above. 

7.0 Areas for Improvement 
Improving the execution time of the BLASTP algorithm on GPUs potentially requires improvements in 

three areas: data structure and placement, data movement and control/data divergence.   This analysis 

will focus on the data placement question.   Ideas to improve data movement and divergence control 

will be discussed in Section 8, but they are beyond the scope of this initial study. 

7.1  Data Placement 

As observed in several of the previous sections, optimizing the data structures and placement is key to 

good GPU performance.    In the current implementation of CUDA-BLASTP, the key data structures are 

mainly stored in texture memory with the exception of the DFA[i].nextGroup vector which is stored in 

constant memory.    This section will look at opportunities for optimizing the placement of these 

structures.   

7.1.1  nextGroup 

As shown in Figure 5, the DFA nextGroup pointer can be deterministically calculated based on the 

current subject sequence and the word length. 

DFA[i].next = DFA[(20 * i) % (20
(w-1)

)] where i = subject_sequencei 

Hence, the lookup into a pre-calculated table could be replaced with a local calculation rather than a 

lookup of constant memory. 

Unfortunately, the change has little impact on the execution times, as shown in the table below. The 

table shows the relative execution time of the optimized version vs. the base version (Opt/Base * 100%). 

  P14144 P42018 Q52TG9 Q52KR2 P08678 Ave 

Calculate nextGroup 99% 99% 100% 103% 98% 100% 

Table 9: Optimizations: Calculate nextGroup 

The overall cost of a cached constant memory lookup is not significantly more than the calculation 

above, especially given the modulo 400 operation in the equation.  Replacing the modulo 400 by a 

power of two shift either by padding the vector or reducing the alphabet to 16 might improve 

performance, but still it is unlikely. 

7.1.2  Shared Memory 

Another optimization is to move the DFA[i].nextWord from a 2D texture memory to the local Shared 

Memory.  The shared memory block is a high bandwidth, low latency per SM R/W memory structure.  

The one disadvantage of shared memory is that the application must explicitly load the shared memory 

prior to its use. Another disadvantage of using Shared Memory is that the Shared Memory space (32KB 

per SM) must be shared across all active blocks on a given SM.   



In this application, the 2D array, which is a 400x20x2 (16000) byte structure, must be copied into each 

SM (8 total) for each block (96 in the current configuration) executed, as the lifetime of the shared 

memory data is the block execution lifetime.  In addition, this 16000 byte shared memory allocation 

limits the number of active blocks that can run on the SM to 2, as the 32KB shared memory block must 

hold this allocation (16000) for all active blocks.  Table 10 below shows the resulting performance for 

this configuration. As can be seen, the limited number of active blocks minimizes the potential gains 

from using shared memory.   

  P14144 P42018 Q52KR2 P08678 Ave 

Shared Memory 128% 131% 155% 167% 145% 

Table 10: Optimizations - nextWord in shared memory 

The shared memory implementation has on average a 45% longer execution time.  Although, per kernel 

statistics shows that when using shared memory, each threads runs in roughly 70% of the time as 

compared to the base implementation.  Hence, with a shared memory implementation, each thread 

runs in approximately ¾ of the time compared to the base configuration, but due to size limitations, only 

half as many threads can be running at any given time.   

If storage for the alphabet could be compressed or reduced, then more DFA structures could be held in 

shared memory.  For example, if the 1600B footprint could be reduced to 8192B, then the shared 

memory on a given SM could hold twice the DFA structures. This would allow twice the number of 

thread blocks to execute on a given SM, unless other resources limited the number of blocks or threads 

that could be concurrently executed.  In addition, if the DFA state could be compressed to 8b rather 

than 10b, then potentially more thread blocks could run concurrently. 

7.1.3   Constant Memory 

The final experiment is to move the nextWord structure into constant memory.  The table below shows 

relative execution times when constant memory is used for this structure rather than texture memory; 

the average slowdown is 2%. As with the previous two optimizations, the results show that texture 

memory continues to be the most efficient memory. 

  P14144 P42018 Q52KR2 P08678 Ave 

Constant Memory 106% 105% 102% 97% 102% 

Table 11: Optimizations - nextWord in constant memory 

Overall, these studies have demonstrated that the texture memory is the most efficient memory for 

these types of read-only, sparsely accessed data.  This result corroborates the similar conclusion reached 

in the GPU-BLASTP work [3]. 



8.0 Conclusions 

8.1 Initial Analysis 

This paper examined the detailed implementation and execution behavior of the CUDA-BLASTP 

implementation.  The analysis shows that roughly 50-70% of the overall execution time is spent in the 

two CUDA Kernels.  The remaining time is spent moving data between the GPU and CPU memory 

systems.  In addition, the analysis shows that roughly 77% of the kernel execution time is spent in the 

Hit Check portion of the kernel, in which the DFA structure is accessed to determine if the current 

subject sequence word has a match in the query sequence.  The analysis focused on optimizing the 

lookups into this DFA structure. 

To address the performance of the Hit Check functionality, three alternative schemes were examined. 

First, the DFA.nextGroup texture access was replaced with a direct computation.  This change did not 

improve execution time.  Second, the DFA.nextWord structure was place in Shared Memory.  The 

limited size of the Shared Memory limited the number of blocks that could concurrently execute on each 

SM.   Finally, the DFA.nextWord structure was place in Constant Memory.  Again, this scheme resulted in 

a slight degradation of the performance.  Overall, this experiment demonstrated that for these sparsely 

accessed, read-only structures the Texture Memory is the optimal storage.  The reason is that the 

texture memory is designed to support texture accesses in graphic, and these texture accesses have very 

similar access characteristics compared to the DFA accesses. Finally, the organization of the DFA 

structure could be revised to attempt to shrink the total storage to allow more efficient use of shared 

memory. 

The data movement can likely be improved using the two-level results buffer used by the GPU-BLASTP 

implementation, and potential compression of the subject database could also help reduce the 

overhead of the copy.  

The divergence analysis and potential improvement requires significant analysis and is beyond the scope 

of this report. 

8.2 Future Directions 

In addition to the ideas presented in this paper, future implementations of BLASTP on GPUs could 

examine the following ideas.  First, multiple query sequences could be processed by the GPU for each 

block of the subject database sent to the GPU.  This would allow the cost of copying the database to the 

GPU to be amortized across multiple searches. Second, the new CUDA Nested Parallelism feature could 

allow the Blast_Kernel to directly call the sub_based_sw kernel.  This would also require the GPU to 

do the post processing of the Blast_Kernel results, but would eliminate the copies to and from the 

CPU between these two kernel stages of the algorithm.  Finally, the results buffers could be stored in 

CPU memory. This would allow the results data to be written back to CPU memory as they are produced 

rather than at the end of the computation. Overall, GPUs appear to have significant potential for 

improving the performance of the BLASTP algorithm. 
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