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ABSTRACT  Clustering of microarray data has 
been and continues to be an effective tool for 
identifying the function of novel genes. The size 
of microarray experiments is currently limited 
to 10-30 arrays but researchers are likely to 
migrate towards larger array sizes. Increasing 
the number of arrays improves the feasibility 
of several more advanced statistical signal 
processing methods, which can be used to 
denoise the data prior to clustering or as a 
replacement for clustering. Several of these 
methods, i.e., PCA, SVD, FA, BSP, and ICA, 
are analyzed for their ability and potential to 
improve gene identification. 
 
 
Microarray data represents the expression of 
thousands, or even tens of thousands, of different 
genes as a function of experimental conditions 
(environments), tissue types (samples), or time. 
Typically microarray data is processed by 
clustering the genes into distinct subsets that are 
mutually exclusive and collectively exhaustive. 
Assuming that genes that cluster together perform 
similar or related functions, clustering can be used 
to help identify the function of unidentified genes. 
Indeed, much success has already been made 
along these lines (1). 
   Current experiments? involve on the order of 10 
to 30 arrays. The number of arrays used is likely 
to increase since it is only a matter of time before 
future technological advances reduces the cost and 
effort of data collection. As the array sizes 
increase then there are a number of statistical 
signal processing methods that become viable for 
microarray analyses, e.g., Principal Component 
Analysis (PCA), Singular Value Decomposition 
(SVD), Factor Analysis (FA), Beamspace 
Projections (BSP), and Independent Component 
Analysis (ICA). Any of these five methods may 
be used to denoise the microarray data prior to 
clustering and the last method, ICA, can also be 
used to separate the environmental and 

experimental influences in a manner that makes it 
an appropriate alternative to clustering. Both of 
these approaches, i.e., denoising/clustering and 
blind separation, are discussed herein for the 
purpose of gene identification. 
   Denoising is a preprocessing step that is applied 
in hopes of removing extraneous signals and 
thereby improving the performance of the 
subsequent clustering. For the methods considered 
here, the denoising consists of either finding a 
linear transformation of the microarray data that is 
optimal in a particular sense or finding/selecting a 
set of bases which explains well the portion of the 
observations that are due to the signals of interest. 
   Separation can be obtained using ICA under 
certain conditions (9). Whereas the items of 
interest for denoising are the estimates of the 
cleaned signals, the item of interest for blind 
separation is the estimate of the system. The 
system defines the relationship between each of 
the individual gene expression levels and the 
underlying biological and environmental factors 
that are responsible for changes in expression 
levels. Since the system describes how much each 
of these factors contributes to the overall gene 
expression, the system estimate can be used in 
place of clustering either the columns or the rows 
of the gene expression matrix. 
 
GENERATIVE MODEL OF GENE EXPRESSION 
 
The observations are given by x(n), which is a (Mx 
x 1) vector that contains the gene expression for 
each of the Mx genes in the nth array (henceforth 
the independent variable is commonly assumed to 
be time without loss of generality). The (Mx x N) 
data matrix is given by X = [x(0) x(1) … x(N-1)], 
the constituents of which are the vectors of  the N 
arrays/time points. The gene expression data is 
found using one of two methods. The first 
method, which is in common use, is to extract 
RNA from both experimental and reference 
samples. The experimental samples are labeled 
with a red fluorescent dye during reverse 
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transcription, whereas the reference samples are 
labeled with a green fluorescent dye (1), (8). The 
samples are mixed and then placed on a, e.g., 
spotted DNA microarray that contains the vast 
majority of the ORF’s for the organism in 
question. The final observation, x(n), represents 
the log of the ratio of the quantity of biological 
material labeled with red dye with respect to that 
of the green dye. The data is trimmed so that the 
minimum value is -3 and the maximum value is 
+3. The second method does not use a reference 
sample nor is clipping applied. Hence the final 
observation represents the amount of biological 
material labeled with only the red dye. This 
method of data collection is required for three of 
the denoising methods listed in the following 
section, FA/ICA, BSP, and ICA, since they 
assume that there is a linear relationship between 
the biological sources and the observations. 
   Clustering is usually applied to ratio data, which 
is not a problem since linearity is not assumed. 
However, using ratio data for clustering does have 
one important drawback. The observability of a 
particular gene depends heavily on the mean 
expression values of the sample and the reference. 
Genes that have a small mean expression (relative 
to the random fluctuations about the mean) are 
much more likely to produce a noticeable change 
in the observed gene expression data, whereas 
genes that have a large mean expression for both 
the sample and the reference will have log ratios 
that are nearly constant over all arrays. Hence 
these latter genes are ignored in the subsequent 
clustering. This problem is avoided by the 
denoising methods that are based on the linear 
model assumption since their performance is 
invariant to the mean value. 
   Model. Several of the methods to be described 
are based on knowing a generative model for the 
observations. Even though the other methods do 
not require a model, it is convenient to provide 
one since it provides a mechanism by which the 
different methods can be unambiguously 
compared (using simulated data) and it makes 
explicit several otherwise non-conspicuous 
assumptions of the different gene identification 
methods. The inferences that follow are based on 
this model and, therefore, are only as valid as the 
model on which they are based. The generative 
model used here is given by, 
 

)()()()( nnnn vBuAsx ++=            (1) 
 
where s(n) is the (Ms x 1) vector of zero-mean 
biological factors of interest, u(n) is the (Mu x 1) 
vector of biological factors of no interest, and v(n) 
is the (Mv x 1) vector of zero-mean Gaussian-
distributed random noise. Likewise the (Mx x Ms) 
matrix A and the (Mx x Mu) matrix B contain the 
strength of the relationship between the factors 
and the gene expressions. The signals s(n), u(n), 
and v(n) may be expressed in matrix notation as S, 
U, and V, respectively, in the same manner used 
for defining X. The problem of finding A or s(n) 
in Equation (1) is identical to that addressed in the 
Blind Source Separation (BSS) literature, where 
the factors are commonly referred to as 
independent components, A is referred to as the 
mixing matrix, and the remainder is either lumped 
together as noise or ignored altogether. Notice that 
only u(n) is allowed to have a mean differing 
from zero. This is done only as a matter of 
convenience. Also, s(n) is referred to hereafter as 
the set of sources, u(n) as the interference or 
interfering sources, and v(n) as the noise. 
   Example. The signals for this model can be 
explained using a trivial example. Suppose that 
the temperature and serum levels are the 
experimental conditions of interest and that they 
are either measured or are externally controlled. 
The Ms = 2 sources are then the two time courses 
of the gene expressions due to these two 
experimental conditions. The A matrix contains 
two column vectors, one for each of these factors, 
whose ijth element is zero if the jth factor has no 
effect on the ith gene and is positive/negative if the 
jth factor up-regulates/down-regulates the ith gene, 
respectively. The vector u(n) and matrix B are 
similarly defined except that they account for all 
other (interfering) cell activities. The interference 
is assumed to be active both before and during the 
experiment as opposed to s(n), which is assumed 
to be active only during the experiment. 
Consequently the baseline gene expression is 
simply Bu(n)+v(n). 
    This model allows for the possibility that 
several different functions affect the same gene or 
set of genes. Since multiple functions can affect 
an overlapping set of genes it is appropriate to 
think of the gene expression levels as representing 
a mixture of multiple functions. It is also trivial in 
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this model to incorporate the possibility that 
multiple genes are co-regulated. This is 
accomplished by making similar the rows of A 
that pertain to the genes in question. 
 

DENOISING 
 
The ideal solution for denoising, according to the 
model given in Equation (1), is As(n). There are 
numerous possible approaches that can be used 
for denoising. The following non-comprehensive 
list includes several approaches that appear in the 
microarray literature and several methods found in 
the literature of other fields. 
 

I. PCA 
II. SVD 
III. FA/ICA 
IV. BSP 
V. ICA 

 
   I. PCA computes a data-dependent linear 
transform that is based on the (Mx x Mx) 
symmetric gene correlation matrix, E[x(n)x(n)T], 
or the (N x N) symmetric array correlation matrix, 
E[x(n)Tx(n)] (11). The expression for the 
correlation matrix for the former of these two 
options is given by, 

T
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where E[x(n)x(n)T] is approximated well by XXT 
for wide-sense stationary, correlation ergodic data 
of sufficient length, Q is the (Mx x Mx) matrix of 
eigenvectors, and Λ  is the (Mx x Mx) diagonal 
matrix of eigenvalues. The linear transformation 
for PCA is based on the (Mx x L) matrix Q’, which 
consists of the L eigenvectors that are associated 
with the L largest eigenvalues. The estimate of the 
cleaned observations is given by, 
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It is well-known that PCA, which does not use a 
specific model for the noise, is optimal in terms of 
minimizing the squared error of the reduced-rank 
representation. It is also well-known that this 
approach works only if the L largest eigenvectors 
span the space of the sources, which basically 
requires that the power of As(n) is much larger 
than the power of Bu(n)+v(n). The problem is that 

PCA is not appropriate when it is needed most, 
i.e., for cases of low signal-to-noise ratio. 
   II. SVD can be applied directly to the data 
matrix, X, in order to find a linear transform (11).  
This is tantamount to using PCA where the matrix 
of left singular vectors, QL, corresponds to Q, the 
eigenvector matrix of E[x(n)x(n)T], and the matrix 
of right singular vectors, QR, corresponds to the 
eigenvector matrix of E[x(n)Tx(n)] where, 
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and Σ  is the matrix of singular values. However, 
this is not the only manner in which SVD can be 
applied. Alter et al. use SVD to generate a set of 
basis vectors (4), which are then used in place of 
the gene expression data. This is an interesting 
approach, although it raises several questions. 
SVD produces left and right eigenmatrices that 
differ in dimensionality. The choice of associating 
the eigengenes with one of the eigenmatrices and 
the eigenarray with the other seems quite 
arbitrary. This point is relevant since swapping 
these two definitions will produce a different 
result. This approach, which imposes a 
biorthogonality constraint on the data, is one that 
has been called into question many times in the 
BSS community (16). Additionally, it is not 
surprising that a periodic process can be fit well 
with two orthogonal sinusoids having the same 
periodicity as the process. This choice of basis 
functions is tantamount to approximating a 
periodic signal with the first non-dc term of a 
Fourier series expansion. Nevertheless, this paper 
introduces an intriguing idea and has proven to be 
quite thought provoking. 
   III. FA/ICA, unlike PCA, includes a specific 
model for the noise (10). This is a novel approach 
to solving the BSS problem that has only recently 
been submitted for publication (12). The FA/ICA 
approach for denoising is accomplished using 
three steps. The first step is to find the maximum 
likelihood estimate of BBT+Γ  from the baseline 
data, Bu(n)+v(n), where the likelihood is found by 
assuming u(n) and v(n) are multi-variate 
Gaussian-distributed, the correlation matrix of 
v(n), denoted by Γ  , is equal to γI, the correlation 
matrix of u(n) is I, I is the identity matrix, and γ is 
an unknown parameter to be estimated. Due to an 
inherent identifiability limitation, B can not be 
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found in this manner since any rotation of B also 
maximizes the likelihood for this particular 
model. Hence the estimate of B used in the first 
step can be expressed as B’=BR, where R is an 
unknown rotation. This is not a problem since (1) 
the goal is to find BBT and (2) the estimate of BBT 
is given by B’B’T=BRRTBT, which by the 
definition of a rotation matrix equals BBT. The 
second step is similar to the first except that it is 
applied to the data where the sources are active. In 
this step Bu(n)+v(n) is treated as the noise and the 
goal is to find the maximum likelihood estimate of 
A, where the likelihood is found by assuming s(n) 
is a multi-variate Gaussian-distributed  variable 
having a correlation matrix equal to I and the 
noise has a correlation matrix found from the first 
step, namely, BBT+Γ . The second step has the 
same identifiability issue as the first so that the 
estimate of A is correct up to an unknown rotation 
matrix, R. The third step represents s(n) as Ry(n), 
where each element of y(n) is assumed to be a 
mutually statistically independent variable having 
a non-Gaussian distribution and R is a rotation 
matrix that is found using ICA, this removing the 
ambiguity. Using this approach the cleaned 
observations are given by, 
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where A’ , R’, and y’(n) are the estimates of A, R, 
and y(n), respectively. 
   The first step of FA/ICA essentially estimates 
the correlation matrix of the baseline data. This 
could be done in the usual fashion, to wit, using 
(BU+V)(BU+V)T. The advantage of using FA is 
that the number of free parameters required to 
estimate this correlation matrix is reduced from 
O(Mx

2) to O(MxMs), where Ms is assumed to be 
much less than Mx in agreement with a publication 
by Holter et al. (5). This is critical for good 
estimation of the unknown parameters when the 
number of arrays/time points is small relative to 
the number of genes. Another nice feature of this 
approach is that it eliminates the need for ICA to 
separate the sources from the interference since 
these are eliminated in the second step. A 
straightforward ICA approach attempts to separate 
all the elements of both s(n) and u(n), which is 
more difficult especially when Mu is large. The 
validity of FA/ICA is based on the assumption 

that all signals are i.i.d., u(n) and v(n) are 
Gaussian, all of the eigenvalues of Γ  are 
approximately equal, and also that all of the 
required conditions of the ICA method are met.  
These latter items are addressed when ICA is 
discussed below. 
   IV. BSP is based on a beamforming approach 
that has been used recently to localize neural 
sources in magnetoencephalography and 
electroencephalography data (2). Unlike FA/ICA, 
BSP does not assume a specific noise model. 
FA/ICA estimates the statistics of the interfering 
signals by using full-rank baseline data. This 
requires data to be collected prior to the point 
where the experimental conditions are varied. 
BSP, on the other hand, uses a reduced-rank 
estimate of the sources. Hence the noise statistics 
can be approximated as the statistics of the signals 
that lie in the null-space of the transformation that 
is used to explain the sources. In this respect BSP 
is similar to PCA. The difference is that BSP 
describes the sources using a set of both spatial 
and temporal basis functions that are optimal for 
the sources under consideration. Consequently 
BSP does not require that the power of As(n) is 
large relative to Bu(n)+v(n). It does, however, 
require that the basis functions are known or that 
good approximations can be obtained using prior 
knowledge of the temporal and spatial span of the 
sources. For example, if it is known that the 
energy of the sources is focused in a specific set 
of frequencies then the temporal basis vectors can 
be chosen based on the maximum eigenvectors of 
the autocorrelation matrix of the sources 
represented in the frequency domain and 
integrated over the specified frequency range. 
This makes the inherent assumption that the 
autocorrelation matrix of the sources, which is 
unknown, is approximated well by bandpass white 
noise. 
   In this framework the goal is to approximate the 
sources in the space of the observations (as given 
by AS, as opposed to estimating the sources in the 
space of the sources, which is given by S) by, 
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where H is a (Mx x L1) matrix whose L1 columns 
consist of the spatial basis vectors, D is a (N x L2) 
matrix whose L2 rows consist of the temporal 
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basis vectors, and Θ  is the (L1 x L2) reduced-rank 
approximation of AS that is found using the 
maximum likelihood technique. Once these three 
matrices are obtained the estimate of the cleaned 
observations is given by, 
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where d(n) is the column of DT corresponding to 
time n. 
   For BSP the signals of interest are described by 
the portion of the observations that lie in the space 
spanned by the columns of H and the columns of 
D. Likewise, the interference, by definition, is the 
portion of the observations that lie outside the 
space spanned by the columns of H or the 
columns of D. Since the same data is used to 
estimate both the source and interference 
statistics, BSP is more robust to non-stationary 
data than the FA/ICA approach. Additionally, 
since BSP does not require baseline data it may 
require a fewer number of arrays for a given level 
of performance. 
   V. ICA can be applied to a given dataset in two 
fundamentally different ways. The model given 
by Equation (1) is appropriate when ICA is 
applied to the rows of x(n). This approach seeks to 
find the unknown sources, s(n), and the unknown 
mixing matrix, A, given only the observations, 
x(n). In the second approach ICA is applied to the 
columns of the data matrix. In this case the model 
should be changed to, 
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where xT(m) and vT(m) are the mth row of X and V, 
respectively, and all other quantities are different 
from their counterpart in Equation (1) since they 
have different dimensionalities and represent 
different signals/systems. 
   There are several trade-offs between the row-
wise and column-wise approaches. ICA performs 
better if the data length is longer than the 
dimensionality. The column-wise approach is 
therefore well suited for microarray data since the 
dimensionality in this case equals the number of 
arrays and the data length is given by the number 
of genes. This is, in fact, the reason given by 
Liebermeister for chosing the column-wise 
approach (6). 

   The downside of the column-wise approach is 
that that “sources” do not correspond to biological 
phenomena. In the row-wise case it may be 
surmised that each of the sources is related to a 
single response/function. If this is the case and if 
there is an unambiguous match between an 
externally controlled and/or measured condition 
and a source estimate then the associated column 
of A directly indicates which genes are used for 
that function/response. Whether or not there is a 
close match between the experimental conditions 
and the source estimates, a threshold can be 
applied to the columns of the A matrix to generate 
a set of gene clusters or to the rows of A to 
generate clusters of functions/responses. The 
difference from this approach and performing 
traditional clustering on the observation matrix is 
that the former can place a single gene into 
multiple clusters (this can also be accomplished 
with clustering using fuzzy memberships). 
Another difference is that, supposing the ICA step 
is successful, thresholding the rows/columns of A 
should be less sensitive to the mixing that occurs 
when genes are regulated by multiple processes. 
Row-wise ICA can be used in experiments where 
multiple conditions are varied simultaneously, 
which is somewhat reminiscent of the advantage 
cited for using the two-color fluorescent labeling 
system. Another nice feature of the row-wise ICA 
approach is that, if one is willing to assume that 
the source estimates from a given experiment 
represent true sources, these source estimates may 
be stored in a database and used in subsequent 
experiments. Having the source estimates a priori 
reduces the problem of finding A from an ICA 
problem to the much simpler multi-variate 
regression problem. In addition it allows 
researches to compare cell responses from 
different tissues or organisms with previously 
published work in a manner that is robust to the 
mixing that naturally occurs in microarray data. 
This is not possible for the column-wise ICA 
approach, which is valid only for the dataset on 
which it is originally applied. 
   Denoising using a standard ICA method 
involves three steps. First, the sources and the 
interferences must be separated from themselves 
and from each other. Second, the outputs of the 
ICA method must be categorized into those that 
are sources and those that are interference. Third, 
the interference components are removed and the 
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ICA outputs are inverse transformed back into the 
space of the observations. This is represented 
mathematically by, 
 

(n)s'Wx
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=)(n           (9) 
 
where W is the transformation that separates the 
observations and s’(n) is the source estimate 
vector with the elements that correspond to 
interfering sources replaced with a value of 0. 
Also, it is common to use PCA as a preprocessor 
to reduce the dimensionality prior to demixing.   
Notice that ICA can be used for denoising with or 
without FA preprocessing, although the reverse is 
not true. 
   ICA has a certain minimum set of requirements, 
none of which are addressed in either of the 
papers by Liebermeister (6) or Saidi et al. (7). For 
example, the number of significantly energetic 
sources, upper bounded by Ms+Mu, must be less 
than or equal to the number of observations, Mx. 
This requirement is reduced to Ms < Mx for 
FA/ICA. The standard ICA approach also requires 
that the sources and interference (sources only for 
FA/ICA) are either not Gaussian-distributed or 
have unique temporal autocorrelation functions. 
More importantly for microarray data are the 
requirements for linearity and memory-less 
mixing. If a linear model provides a good 
approximation of the underlying biological 
processes then, to preserve the linearity, one must 
not use microarray data generated using a ratio of 
expression levels. While it is always possible to 
apply ICA to any data, including the case when 
ratios are used, the resulting basis functions lose 
all biological significance. It is also crucial to 
avoid saturation, which can occur both in the cell 
and during the data collection process. 
   Another concern is whether or not instantaneous 
(memory-less) mixtures are appropriate. This is 
implicitly assumed both in this paper and in the 
papers by Liebermeister and Saidi et al. Actual 
cell processes do not occur instantaneously and 
can only be approximated to be instantaneous if 
the sampling period is chosen sufficiently large 
(large relative to the rate at which the impulse 
response of the mixing decays to 0, which in turn 

depends on the depth of the associated cellular 
networks). However, the sample rate must also be 
at least twice the highest frequency of any 
component having non-negligible energy in order 
to prevent aliasing in accordance with the Nyquist 
criterion (13). It is possible that these conditions 
cannot be simultaneously met and is an item that 
deserves further research. The trade-off in sample 
rate selection can be avoided by using 
Convolutive ICA methods (14), but their level of 
performance is significantly lower than that of 
instantaneous ICA methods. 
   Model Selection and Overfitting. All of the 
denoising methods listed above share the problem 
of model order selection and the potential problem 
of over-fitting the data. Optimal model order 
selection is an ill-posed problem that is usually 
addressed by human expert intervention. The 
potential for overfitting depends on the number of 
adaptable parameters relative to the data length. A 
general rule of thumb is that there should be at 
least 5-10 times as much data as adjustable 
parameters. 
   The amount of data in all cases considered here 
is MxN. The number of adaptable parameters is 
Mx

2 for PCA (since it requires estimation of the 
autocorrelation matrix), ??? for SVD (using 
Alter’s approach), Mx(Ms+Mu)+1 for FA/ICA, 
L1L2 for BSP (assuming H and D are known), 
Mx(Mx-1) for row-wise ICA (without PCA 
preprocessing), and N(N-1) for column-wise ICA 
(without PCA preprocessing). As long as Mx >> 
N, the most appropriate methods above with 
regards to overfitting are column-wise ICA, 
FA/ICA, and possibly BSP. 
 

CLUSTERING 
 
The rows of the observation matrix, x(n), can be 
clustered with or without the aid of any of the 
denoising methods listed above. Besides 
denoising, another option to improve the accuracy 
of gene identification is to improve the clustering 
method. Simple hierarchical clustering methods 
are commonly used, although there is no lack of 
more sophisticated methods. One such method, 
developed by Jenssen et al. (3), is considered  
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here. This kernel-method approach maximizes the 
Cauchy-Schwarz divergence (15) between clusters 
(the divergence is an information-theoretic 
quantity that is analogous to a distance measure 
between probability distributions). The first step 
of this method involves mapping the data to a 
high-dimensional kernel feature space. In this 
space the cosine of the angle between the resulting 
cluster vector means is minimized, which is 
equivalent to maximizing the Cauchy-Schwarz 
divergence when the probability density functions 
are estimated using Parzen Window density 
estimation. This method has been shown to 
perform very well when highly non-linear 
decision boundaries are required. However the 
performance is fairly sensitive to the user-defined 
variable referred to as the kernel size. 

 
MATERIALS AND METHODS 

 
The model given in Equation (1) is used to create 
N=200 arrays/time points of data, the first 80 of 

 
 
 
 
 which precede the two externally controlled/ 
monitored conditions, i.e., temperature and serum 
level. The time courses of these Ms=2 sources, 
s(n), are damped sinusoids, which are shown in 
the top of Figure 1. Each observation vector 
consists of the instantaneous gene expression 
levels of Mx=250 genes. As shown in Figure 2 
each source regulates a total of 100 different 
genes, 62 of which are shared. The topmost 
subplot in Figure 3 shows the (unobserved) time 
courses of the gene expression levels due only to 
the sources, As(n), and the subplot directly 
inferior shows the observation time courses, x(n), 
which include the Ms=2 sources, the Mu=5 
interfering sources, and the additive noise. The 
source distributions, owing to the damping, are 
super-Gaussian and the interfering sources and the 
noise both have Gaussian distributions. 
   Clustering is performed on the PCA and 
FA/ICA denoised data as well as on the original 
observations. The results for the latter are denoted  

Figure 1. Top: Time courses of the unobserved sources (in sensor space); Second from top: 
observed time courses (one for each gene); Third from top: cleaned signal using PCA (L=10); 
Bottom: cleaned signals using FA/ICA. 
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F
igure 2. Number of genes regulated by each of the 
two sources both individually and collectively. 
 
as the Raw Data results. Two results for PCA are 
included. The first uses L=2 maximum 
eigenvectors and the second uses L=10. Likewise, 
FA/ICA assumes there are Ms=2 sources. 
Clustering is performed using both a hierarchical 
clustering method known as Unweighted Pair-
Group Method Using Arithmetic Averages 
(UPGMA) and the kernel-based information-
theoretic clustering method briefly described in 
the previous section, which is referred to as CS 
Divergence. The CS Divergence clustering 
method uses the affinity matrix (as opposed to the 
Laplacian matrix) and the UPGMA method uses 
the linear correlation coefficient for the distance 
metric. The results for UPGMA are obtained from 
the on-line Gene Expression Analysis Suite V1.1 
(GEPAS) located at http://gepas.bioinfo.cnio.es/ 
cgi-bin/cluster. 
   Gene identification accuracy is measured by 
assigning all the elements of each generated 
cluster to one of three classes, i.e., Temperature, 
Serum, or Other. Since both clustering methods 
generate non-overlapping clusters, the 62 shared 
genes are assigned to a single source by 
associating each with the source that has the larger 
magnitude regulation factor. Using this approach 
yields 66 and 72 genes associated with the 
Temperature and Serum Level experimental 
conditions, respectively. The classification of each 
cluster is determined as the class that has the 
largest weighted cardinality, where the weighting 
equals the inverse of the probability of a gene 
belonging to the class in question. For example, if 
a particular cluster contains three genes, one gene 
from each class, then the cluster is assigned to the 
class that has the fewest exemplars. This selection 
essentially chooses the class that maximizes the a 
posteriori probability given the usual simplifying 
assumptions that each gene is drawn 

independently from a uniform distribution and the 
prior probability equals the number of exemplars 
divided by Mx. Since knowledge of the true class 
of each gene is required, this approach is not 
feasible to use in practice and it represents an 
upper bound to performance given the specific 
cluster labels. 
   The blind separation approach is also used for 
gene identification. The columns of the estimated 
A matrix generated by FA/ICA are used without a 
clustering method to directly form two 
overlapping clusters (this could also be performed 
on the rows of A to group genes according to gene 
expression modes). Since overlapping clusters are 
allowed with this linear model approach, the 
performance metric may be based on two 2-class 
assignments. In the first assignment all the genes 
are classified as either regulated by Temperature 
or not regulated by Temperature. The second 
assignment is identical to the first except it 
concerns the Serum Level experimental condition. 
Hence there is no restriction that prevents clusters 
associated with Temperature from overlapping 
those associated with Serum Level. Using this 
information two ROC curves are generated.  
 

RESULTS 
 
Figure 4 shows the original set of gene expression 
data and Figures 8, 9, and 10 (in the Appendix) 
show the cleaned expression data that result from 
the PCA (L=2), PCA (L=10), and FA/ICA 
methods, respectively. The hierarchical UPGMA 
clustering results are shown in each figure to the 
left of the associated gene expression data. The 
time courses of the cleaned gene expression data 
(source estimates in the space of the sensors) are 
shown in Figure 3 and Figure 1 shows the source 
estimates (in source space) for FA/ICA. This latter 
plot does not apply for PCA or for the Raw Data. 
In this example FA/ICA is able to recover blindly 
good approximations of the true sources even 
though they are not visible in the original data. 
   Figure 5 is a plot of the accuracy of the 
clustering results as a function of the number of 
clusters when UPGMA is used. Using this 
clustering algorithm PCA (L=10) performed 
slightly better than the other three. The tendency 
for all methods is for the accuracy to improve as 
the number of clusters increases. This is a 
consequence of the fact that the class of each 

Temperature 

Serum Level 

38 38 62 
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cluster is optimally chosen and, as the number of 
clusters increases, the number of genes in each 
cluster approaches one. It is trivial to show that 
the accuracy, under these conditions, approaches 
100%. Figure 6 is identical to Figure 5 except that 
it pertains to the CS Divergence clustering 
method. In this case FA/ICA performs best. The 
results for this clustering algorithm are 15-20% 
better than that produced by UPGMA. 
   Figure 6 shows the two ROC curves for FA/ICA 
that result from applying a threshold to each 
column of the estimate of the A matrix. Recall that 
each column corresponds to one of the 
experimental conditions and the Mx elements of 
each column represent the degree to which the cell 
response to a given experimental condition 
regulates each gene. The resulting ROC curve for 
the Temperature response cannot be seen since the 
true positive rate equals 100% before the first 
false positive is found, which represents the best 
performance achievable. Likewise, the ROC curve 
for the Serum Level is nearly perfect. 
 

DISCUSSION 
 
A simple generative model is introduced in order 
to compare denoising methods, clustering 
algorithms, and column thresholding for the 
purpose of gene identification. For the simpler 
clustering algorithm, PCA (L=10) performs well. 
Even though there are only two sources PCA 
(L=2) performs worse than PCA (L=10). This is 
not surprising since the signal-to-noise ratio is 
very low in this example, so that the maximum 
eigenvectors are not guaranteed to be associated 
with the sources of interest. It is also not 
surprising that the performance of the CS 
Divergence clustering algorithm is noticeably 
better than the simple UPGMA method. What 
may be surprising is how well the linear model 
approach to gene identification performs, although 
any excitement must be tempered by the fact that 
the FA/ICA model is identical to the generative 
model by which the data is produced. It remains to 
be seen whether, or how good, this generative 
model applies to real microarray data. Initial 
results were collected using N=1000 arrays (not 
shown). It was originally believed that the array 
size would need to be this large in order for these 
statistical signal processing techniques to show a 
noticeable improvement over existing cluster-only 

methods. The results of using N=1000 were 
exemplary so the value of N was reduced to 200 
for all results shown here. However, this value is 
still prohibitively large by today’s standards. 
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Figure 3. Top: Unobserved sources (in source space); Bottom: source estimates using FA/ICA. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Gene expression matrix of the unprocessed 
data. The UPGMA clustering is shown on the left. 
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Figure 5. Accuracy as a function of the number of clusters for the UPGMA clustering method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Accuracy as a function of the number of clusters for the CS Divergence clustering method. 
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Figure 7. ROC curves for the Temperature and Serum Level experimental conditions using the blind 
separation method of thresholding the columns of the estimate of A. 
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Figure 8. Gene expression data of cleaned data  Figure 9. Gene expression data of cleaned data 
using PCA (L=2).     using PCA (L=10). 
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Figure 10. Gene expression data of cleaned data 
using FA/ICA. 
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Matlab code used to generate and analyze the gene expression data: 
 
clear all 
N = 250; % total genes 
L = 200; 
 
randn('state',5); 
rand('state',5); 
 
% generate s, sc 
[jnk,jnk0,jnk1,jnk2,jnk3,jnk4,jnk5,jnk6,jnk7,jnk8,jnk9,jnk10,jnk11,s] = 
create_lead_field(275,2,0,0,10,[],'x=0',L,9,7); 
s(3:7,1:L)=randn(5,L); 
s(1:2,:)=s(1:2,:)*2; 
 
% t, pre, post 
t=(-80:119)/60; % time in hours 
pre=find(t<0);post=find(t>=0); 
 
% geneset 
K = 50; % multiple of 10 
for a=1:2,r=randperm(N-50);geneset{a}=[1:K sort(r(1:50))+K];end % temp_tot = geneset{1}, serum_tot 
= genest{2} 
for a=3:7,r=randperm(N-50);geneset{a}=[1:K sort(r(1:50))+K];end 
 
% A, Ac 
A=zeros(N,7); for a=1:10:K, tmp=sign(randn(1,7)).*(1+rand(1,7)); A(a:a+9,:)=repmat(tmp,10,1); end 
for a=1:7, lng=length(geneset{a})-K; tmp=sign(randn(lng,1)).*(1+rand(lng,1)); 
A(geneset{a}(K+1:end),a)=tmp; end 
A=A/50; 
 
% temp/serum genes 
f=zeros(1,N);f(geneset{1})=1; f2=zeros(1,N);f2(geneset{2})=1; f3=find(f.*f2==1); 
f(f3)=0; temp_uni=sort([find(f==1) find(abs(A(f3,1))>=abs(A(f3,2)))']); 
f2(f3)=0; serum_uni=sort([find(f2==1) find(abs(A(f3,1))<abs(A(f3,2)))']); 
temp_ndx=zeros(1,N);temp_ndx(temp_uni)=1; 
serum_ndx=zeros(1,N);serum_ndx(serum_uni)=1; 
 
% mux, muxc, noise, noisec 
mux=0.2*rand(1,N)+0.4;mux=repmat(mux,L,1)'; 
noise=randn(N,L)*0.02; 
 
% s, x 
x=A*s+noise; 
xs=x+mux; f=find(xs<0);xs(f)=1e-3;f=find(xs>1);xs(f)=1; 
 
% yproj, yprojc 
[yproj,sbar,w,jnk,jnk1,jnk2,jnk3,b0,lam0,alp0,g0]=sefaica(x(:,pre),x(:,post),[],0,2,'peaky'); 
 
% clusters 
z2=A(:,1:2)*s(1:2,post);f=find(sum(abs(z2'))==0);z2(f,1)=1e-3; 
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z3=w(:,1:2)*sbar; 
h=zeros(1,250);for 
a=1:N,h(a)=x(1,post)*x(a,post)'/600/sqrt(cov(x(1,post))*cov(x(a,post)));end,figure(7),clf,plot(h),hold 
on,axis([0 100 -0.2 0.2]) 
h2=zeros(1,250);for a=1:N,h2(a)=z2(1,:)*z2(a,:)'/600/sqrt(cov(z2(1,:))*cov(z2(a,:)));end,plot(h2,'k') 
h3=zeros(1,250);for a=1:N,h3(a)=z3(1,:)*z3(a,:)'/600/sqrt(cov(z3(1,:))*cov(z3(a,:)));end,plot(h3,'r') 
 
% saturation image 
q=5*log2(abs((xs(:,post))./repmat(xs(:,pre(end)),1,length(post))));f=find(q>3);q(f)=3;f=find(q<-3);q(f)=-
3; 
figure(1), clf,colormap gray,imagesc(q) 
dim=2; [z,w,w2]=white(q,dim); q=w2*w'*q; % PCA 
q=1*squeeze(yproj(:,:,1))+1*squeeze(yproj(:,:,2));q=q*8/max(max(abs(q))); % FA/ICA 
 
% create data.txt file 
y=double(['#NAMES']); 
for a=post, y=[y 9 double(num2str(a))]; end, y=[y 10]; 
tmp=zeros(1,10000); 
kk=[];for a=1:size(q,1), y=[y double('Gene_') double(num2str(a))]; 
   aaa=1; for aa=1:size(q,2), tmp2=[9 double(sprintf('%10.20f',q(a,aa)))]; tmp(aaa:aaa+length(tmp2)-
1)=tmp2; aaa=aaa+length(tmp2); end, y=[y tmp(1:aaa-1) 10]; end 
fid=fopen('/home/hild/data.txt','w'); 
fwrite(fid,y);fclose(fid); 
 
% read data.nw 
fid=fopen('/home/hild/data.faica.nw'); 
y=fread(fid);fclose(fid); y=y'; y=[y 32*ones(1,10)]; 
mx_val=0; tmp=0; for a=1:length(y), if y(a)==40, tmp=tmp+1; if tmp>mx_val, mx_val=tmp; end, elseif 
y(a)==41, tmp=tmp-1; end, end 
cor_mat=NaN*ones(N,mx_val); 
for a = 1:N 
   f = findstr(char(y),['Gene_' int2str(a) ':']); 
   f2 = find(y(f+5:end)==58) + f+5-1; 
   f3 = find(y(f+5:end)==44 | y(f+5:end)==41) + f+5-1; 
   f4 = length(find(y(f3(1)-1:end)==41)) - length(find(y(f3(1)-1:end)==40)); 
   cor_mat(a,mx_val+1-f4) = str2num(char(y(f2(1)+1:f3(1)-1))); 
   if y(f3(1))==41, f3(1)=f3(1)-1; end % offset when f3(1) == ")" 
 
   done = 0; 
   pcnt = 0; 
   while ~done 
      f3 = find(y(f3(1)+1:end)==41 | y(f3(1)+1:end)==40) + f3(1)+1-1; 
      if isempty(f3), done=1; 
      elseif y(f3(1))==40, pcnt=pcnt+1; 
      elseif y(f3(1))==41 & pcnt>0, pcnt=pcnt-1; 
      elseif y(f3(1))==41 & pcnt<=0 
         f2 = find(y(f3(1)+1:end)==44 | y(f3(1)+1:end)==41) + f3(1)+1-1; 
         if isempty(f2), done=1; 
         else f3 = find(y(f3(1)+1:end)==58) + f3(1)+1-1; 
            f4 = length(find(y(f2(1)-1:end)==41)) - length(find(y(f2(1)-1:end)==40)); 
            cor_mat(a,mx_val+1-f4)=str2num(char(y(f3(1)+1:f2(1)-1))); f3=f2(1); 
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            if y(f3(1))==41, f3(1)=f3(1)-1; end % offset when f3(1) == ")" 
         end 
      end 
   end 
end 
f=find(isnan(cor_mat)==1); cor_mat(f)=0; 
cor_mat=cumsum(cor_mat')'; cor_mat(f)=NaN; 
 
% create clustermap 
corr_ndx=sort(DEL(cor_mat(:)))'; f=find(isnan(corr_ndx)==1); corr_ndx(f)=[]; 
cluster=cell(length(corr_ndx)-1,N); 
mx_ndx=0; 
for a=1:length(corr_ndx)-1 
   ndx=1; gene_ndx=ones(1,N); 
   f=find(abs(cor_mat-corr_ndx(a)) < 1e3*eps); 
   if length(DEL(ceil(f/N))) > 1, disp(' '); disp('Duplicate values found in different columns'), disp(' '); end 
   tmp = sort(DEL(rem(f-1,N)+1))'; 
   row=rem(f(1)-1,N)+1; col=ceil(f(1)/N); 
   f2 = find(cor_mat(row,col+1:end) < corr_ndx(a)) + col+1-1; 
   for aa=1:length(f2), tmp=DEL([tmp'; find(abs(cor_mat(:,f2(aa))-cor_mat(row,f2(aa))) < 1e3*eps)])'; 
end 
   cluster{a,ndx}=tmp; ndx=ndx+1; gene_ndx(tmp)=0; 
 
   done = 0; 
   while ~done 
      f=find(gene_ndx==1); 
      if isempty(f), done=1; 
      else f2=find(cor_mat(f(1),:) < corr_ndx(a)); 
         if isempty(f2), cluster{a,ndx}=f(1); ndx=ndx+1; gene_ndx(f(1))=0; 
            if ndx > mx_ndx, mx_ndx=ndx; end 
         else 
            tmp=f(1); 
            for aa=2:length(f) 
               f3=find(abs(cor_mat(f(aa),:)-cor_mat(f(1),f2(end))) < 1e3*eps); 
               if length(f3)>0, tmp=[tmp f(aa)]; end 
            end 
            cluster{a,ndx}=tmp; ndx=ndx+1; gene_ndx(tmp)=0; 
            if ndx > mx_ndx, mx_ndx=ndx; end 
         end 
      end 
   end 
end 
cluster(:,mx_ndx+1:end)=[]; 
 
s(1,post)=center(s(1,post)); 
s(2,post)=center(s(2,post)); 
Lpost=1/length(post); 
thresh=0.5; 
 
% determine percent correctly classified 
zz=zeros(1,size(cluster,1)); 
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for a=1:size(cluster,1), aa=1; while ~isempty(cluster{a,aa}), aa=aa+1; end, zz(a)=aa-1; end 
av=1:size(cluster,1); 
truepos=zeros(1,length(av)); k=1; 
truepos2=zeros(1,length(av)); k=1; 
zscore=1./[sum(serum_ndx) sum(temp_ndx) N-sum(serum_ndx)-sum(temp_ndx)]; 
for a=av 
   aa=1; 
   while ~isempty(cluster{a,aa}) 
      LL=length(cluster{a,aa}); 
      z=[sum(serum_ndx(cluster{a,aa})) sum(temp_ndx(cluster{a,aa}))];z=[z LL-
sum(z)];[val,pos]=max(z.*zscore); 
      rho1=sum(abs(diag(center(q(cluster{a,aa},:))*repmat(s(1,post),LL,1)')))*Lpost; 
      rho2=sum(abs(diag(center(q(cluster{a,aa},:))*repmat(s(2,post),LL,1)')))*Lpost; 
      if max([rho1 rho2]) > thresh*LL 
         if rho1>rho2, truepos2(k)=truepos2(k)+z(2); 
         else truepos2(k)=truepos2(k)+z(1); 
         end 
      else truepos2(k)=truepos2(k)+z(3); 
      end 
      truepos(k)=truepos(k)+z(pos); 
      aa=aa+1; 
   end 
   k=k+1; 
end 
truepos=truepos/N; 
truepos2=truepos2/N; 
 
f=find(zz<=3*15);plot(zz,truepos,zz(f(1)),truepos(f(1)),'*') 
figure(1),plot(zz,truepos,'k'), hold on 
round(max(truepos(f(1):end))*1000)/10 
 
% information cut and Kmeans clusters 
av2=2:19; 
k=1; 
truepos_ic=zeros(1,length(av2)); 
truepos2_ic=zeros(1,length(av2)); 
for a=av2 
   [labels_ic]=jenssen_InformationCut(q','trad',0,-1,'ic',a,a,1); 
   for aa=1:a 
      f=find(labels_ic==aa); LL=length(f); 
      z=[sum(serum_ndx(f)) sum(temp_ndx(f))];z=[z LL-sum(z)];[val,pos]=max(z.*zscore); 
      rho1=sum(abs(diag(center(q(f,:))*repmat(s(1,post),LL,1)')))*Lpost; 
      rho2=sum(abs(diag(center(q(f,:))*repmat(s(2,post),LL,1)')))*Lpost; 
      if max([rho1 rho2]) > thresh*LL 
         if rho1>rho2, truepos2_ic(k)=truepos2_ic(k)+z(2); 
         else truepos2_ic(k)=truepos2_ic(k)+z(1); 
         end 
      else truepos2_ic(k)=truepos2_ic(k)+z(3); 
      end 
      truepos_ic(k)=truepos_ic(k)+z(pos); 
   end 
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   k=k+1; 
end 
truepos_ic=truepos_ic/N; 
truepos2_ic=truepos2_ic/N; 
 
plot(av2,truepos_ic,'k') 
[round(max(truepos_ic)*1000)/10 round(max(truepos_km)*1000)/10] 
 
%%%%%%%%%%%%%%%%%%%% 
 
tv = 0:0.01:1; 
temp_tp = zeros(1,length(tv)); 
temp_fp = zeros(1,length(tv)); 
serum_tp = zeros(1,length(tv)); 
serum_fp = zeros(1,length(tv)); 
 
www=w*inv(g0); 
if 1==1 
   tmp=www(:,1); 
   www(:,1)=www(:,2); 
   www(:,2)=tmp; 
end 
 
k=1; 
mx1 = max(www(:,1)); 
mx2 = max(www(:,2)); 
for thresh = tv 
   f = find(abs(www(:,1)) > thresh*mx1); 
   temp_tp(k) = length([geneset{1}';f]) - length(DEL([geneset{1}';f])); 
   temp_fp(k) = (length(f) - temp_tp(k))/150; 
   temp_tp(k) = temp_tp(k)*0.01; 
    
   f = find(abs(www(:,2)) > thresh*mx2); 
   serum_tp(k) = length([geneset{2}';f]) - length(DEL([geneset{2}';f])); 
   serum_fp(k) = (length(f) - serum_tp(k))/150; 
   serum_tp(k) = serum_tp(k)*0.01; 
    
   k = k + 1; 
end 
 
figure(1),plot(temp_fp,temp_tp,'k',serum_fp,serum_tp,'k') 
xlabel('False Positives','fontsize',12),ylabel('True Positives','fontsize',12) 
 
%%%%%%%%%%%%%%%%%% 
 
function [A,x] = fa(seednum,noise_pow) 
 
% factor analysis 
% y = Ax + v 
 
L=5; 
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M=275; N=1000; 
randn('seed',seednum); 
Atrue=randn(M,L); 
y=Atrue*randn(L,N) + randn(M,N)*sqrt(noise_pow); 
 
% definitions 
max_iter = 1000; [M,N] = size(y); 
 
% initial conditions 
[V,D,flg] = eigs(y*y'/N,L); 
if flg ~= 0, disp(' '); error('Eigs did not converge'), end 
A = V*D.^(0.5); Anew = A; 
Lambda = 2*diag(1./diag(y*y'/N)); 
wmtrx = [A(:) zeros(M*L,max_iter+1)]; 
invpowAAtrue = 1/sum(sum((Atrue*Atrue').^2)); 
err = [sqrt(sum(sum((Atrue*Atrue'-A*A').^2))*invpowAAtrue) zeros(1,max_iter+1)]; 
 
done = 0; 
iter = 0; 
while ~done 
   % E-step 
   Gamma = A'*Lambda*A + eye(L); 
   invGamma = inv(Gamma); 
   x = invGamma*A'*Lambda*y; 
    
   % Sufficient statistics 
   Rxy = x*y'; 
   Rxx = x*x' + N*invGamma; 
   Ryy = y*y'; 
 
   % M-step 
   Anew = Rxy'*inv(Rxx); 
   Lambda = N*diag(1./diag(Ryy-A*Rxy)); 
    
   powAAnew = sum(sum((Anew*Anew').^2)); 
   rel_dif = sqrt(sum(sum((Anew*Anew'-A*A').^2))/powAAnew); 
   A = Anew; 
   iter = iter + 1; 
   wmtrx(:,iter+1) = A(:); 
   err(iter+1) = sqrt(sum(sum((Atrue*Atrue'-A*A').^2))*invpowAAtrue); 
    
   if rel_dif < 1e-3 | iter >= max_iter 
      done = 1; 
      if iter >= max_iter, disp(' '), disp('Did not finish converging'); end 
   end 
end 
wmtrx(:,iter+2:end) = []; 
err(:,iter+2:end) = []; 
err(end) 
 
figure,subplot(2,1,1),plot(wmtrx'),subplot(2,1,2),plot(err)return 


