
Proc. BIOC 218
Vol. 1, pp. 1-20, March 2005
Genetics

1

Critical assessment of microarray analyses for gene identification

KENNETH E. HILD II* **

*Department of Radiology, University of California at San Francisco,
Contributed by Kenneth Hild, March 15, 2005

ABSTRACT Clustering of microarray data has
been and continues to be an effective tool for
identifying the function of novel genes. The size
of microarray experiments is currently limited
to 10-30 arrays but researchers are likely to
migrate towards larger array sizes. Increasing
the number of arrays improves the feasibility
of several more advanced statistical signal
processing methods, which can be used to
denoise the data prior to clustering or as a
replacement for clustering. Several of these
methods, i.e., PCA, SVD, FA, BSP, and ICA,
are analyzed for their ability and potential to
improve gene identification.

Microarray data represents the expression of
thousands, or even tens of thousands, of different
genes as a function of experimental conditions
(environments), tissue types (samples), or time.
Typically microarray data is processed by
clustering the genes into distinct subsets that are
mutually exclusive and collectively exhaustive.
Assuming that genes that cluster together perform
similar or related functions, clustering can be used
to help identify the function of unidentified genes.
Indeed, much success has already been made
along these lines (1).
 Current experiments? involve on the order of 10
to 30 arrays. The number of arrays used is likely
to increase since it is only a matter of time before
future technological advances reduces the cost and
effort of data collection. As the array sizes
increase then there are a number of statistical
signal processing methods that become viable for
microarray analyses, e.g., Principal Component
Analysis (PCA), Singular Value Decomposition
(SVD), Factor Analysis (FA), Beamspace
Projections (BSP), and Independent Component
Analysis (ICA). Any of these five methods may
be used to denoise the microarray data prior to
clustering and the last method, ICA, can also be
used to separate the environmental and

experimental influences in a manner that makes it
an appropriate alternative to clustering. Both of
these approaches, i.e., denoising/clustering and
blind separation, are discussed herein for the
purpose of gene identification.
 Denoising is a preprocessing step that is applied
in hopes of removing extraneous signals and
thereby improving the performance of the
subsequent clustering. For the methods considered
here, the denoising consists of either finding a
linear transformation of the microarray data that is
optimal in a particular sense or finding/selecting a
set of bases which explains well the portion of the
observations that are due to the signals of interest.
 Separation can be obtained using ICA under
certain conditions (9). Whereas the items of
interest for denoising are the estimates of the
cleaned signals, the item of interest for blind
separation is the estimate of the system. The
system defines the relationship between each of
the individual gene expression levels and the
underlying biological and environmental factors
that are responsible for changes in expression
levels. Since the system describes how much each
of these factors contributes to the overall gene
expression, the system estimate can be used in
place of clustering either the columns or the rows
of the gene expression matrix.

GENERATIVE MODEL OF GENE EXPRESSION

The observations are given by x(n), which is a (Mx
x 1) vector that contains the gene expression for
each of the Mx genes in the nth array (henceforth
the independent variable is commonly assumed to
be time without loss of generality). The (Mx x N)
data matrix is given by X = [x(0) x(1) … x(N-1)],
the constituents of which are the vectors of the N
arrays/time points. The gene expression data is
found using one of two methods. The first
method, which is in common use, is to extract
RNA from both experimental and reference
samples. The experimental samples are labeled
with a red fluorescent dye during reverse

2 Genetics: Hild Proc. BIOC 218 (2005)

transcription, whereas the reference samples are
labeled with a green fluorescent dye (1), (8). The
samples are mixed and then placed on a, e.g.,
spotted DNA microarray that contains the vast
majority of the ORF’s for the organism in
question. The final observation, x(n), represents
the log of the ratio of the quantity of biological
material labeled with red dye with respect to that
of the green dye. The data is trimmed so that the
minimum value is -3 and the maximum value is
+3. The second method does not use a reference
sample nor is clipping applied. Hence the final
observation represents the amount of biological
material labeled with only the red dye. This
method of data collection is required for three of
the denoising methods listed in the following
section, FA/ICA, BSP, and ICA, since they
assume that there is a linear relationship between
the biological sources and the observations.
 Clustering is usually applied to ratio data, which
is not a problem since linearity is not assumed.
However, using ratio data for clustering does have
one important drawback. The observability of a
particular gene depends heavily on the mean
expression values of the sample and the reference.
Genes that have a small mean expression (relative
to the random fluctuations about the mean) are
much more likely to produce a noticeable change
in the observed gene expression data, whereas
genes that have a large mean expression for both
the sample and the reference will have log ratios
that are nearly constant over all arrays. Hence
these latter genes are ignored in the subsequent
clustering. This problem is avoided by the
denoising methods that are based on the linear
model assumption since their performance is
invariant to the mean value.
 Model. Several of the methods to be described
are based on knowing a generative model for the
observations. Even though the other methods do
not require a model, it is convenient to provide
one since it provides a mechanism by which the
different methods can be unambiguously
compared (using simulated data) and it makes
explicit several otherwise non-conspicuous
assumptions of the different gene identification
methods. The inferences that follow are based on
this model and, therefore, are only as valid as the
model on which they are based. The generative
model used here is given by,

)()()()(nnnn vBuAsx ++= (1)

where s(n) is the (Ms x 1) vector of zero-mean
biological factors of interest, u(n) is the (Mu x 1)
vector of biological factors of no interest, and v(n)
is the (Mv x 1) vector of zero-mean Gaussian-
distributed random noise. Likewise the (Mx x Ms)
matrix A and the (Mx x Mu) matrix B contain the
strength of the relationship between the factors
and the gene expressions. The signals s(n), u(n),
and v(n) may be expressed in matrix notation as S,
U, and V, respectively, in the same manner used
for defining X. The problem of finding A or s(n)
in Equation (1) is identical to that addressed in the
Blind Source Separation (BSS) literature, where
the factors are commonly referred to as
independent components, A is referred to as the
mixing matrix, and the remainder is either lumped
together as noise or ignored altogether. Notice that
only u(n) is allowed to have a mean differing
from zero. This is done only as a matter of
convenience. Also, s(n) is referred to hereafter as
the set of sources, u(n) as the interference or
interfering sources, and v(n) as the noise.
 Example. The signals for this model can be
explained using a trivial example. Suppose that
the temperature and serum levels are the
experimental conditions of interest and that they
are either measured or are externally controlled.
The Ms = 2 sources are then the two time courses
of the gene expressions due to these two
experimental conditions. The A matrix contains
two column vectors, one for each of these factors,
whose ijth element is zero if the jth factor has no
effect on the ith gene and is positive/negative if the
jth factor up-regulates/down-regulates the ith gene,
respectively. The vector u(n) and matrix B are
similarly defined except that they account for all
other (interfering) cell activities. The interference
is assumed to be active both before and during the
experiment as opposed to s(n), which is assumed
to be active only during the experiment.
Consequently the baseline gene expression is
simply Bu(n)+v(n).
 This model allows for the possibility that
several different functions affect the same gene or
set of genes. Since multiple functions can affect
an overlapping set of genes it is appropriate to
think of the gene expression levels as representing
a mixture of multiple functions. It is also trivial in

Genetics: Hild
Proc. BIOC 218 (2005) 3

this model to incorporate the possibility that
multiple genes are co-regulated. This is
accomplished by making similar the rows of A
that pertain to the genes in question.

DENOISING

The ideal solution for denoising, according to the
model given in Equation (1), is As(n). There are
numerous possible approaches that can be used
for denoising. The following non-comprehensive
list includes several approaches that appear in the
microarray literature and several methods found in
the literature of other fields.

I. PCA
II. SVD
III. FA/ICA
IV. BSP
V. ICA

 I. PCA computes a data-dependent linear
transform that is based on the (Mx x Mx)
symmetric gene correlation matrix, E[x(n)x(n)T],
or the (N x N) symmetric array correlation matrix,
E[x(n)Tx(n)] (11). The expression for the
correlation matrix for the former of these two
options is given by,

T
QQXX

T != (2)

where E[x(n)x(n)T] is approximated well by XXT
for wide-sense stationary, correlation ergodic data
of sufficient length, Q is the (Mx x Mx) matrix of
eigenvectors, and Λ is the (Mx x Mx) diagonal
matrix of eigenvalues. The linear transformation
for PCA is based on the (Mx x L) matrix Q’, which
consists of the L eigenvectors that are associated
with the L largest eigenvalues. The estimate of the
cleaned observations is given by,

)()(nn xQ'Q'x
T

= (3)

It is well-known that PCA, which does not use a
specific model for the noise, is optimal in terms of
minimizing the squared error of the reduced-rank
representation. It is also well-known that this
approach works only if the L largest eigenvectors
span the space of the sources, which basically
requires that the power of As(n) is much larger
than the power of Bu(n)+v(n). The problem is that

PCA is not appropriate when it is needed most,
i.e., for cases of low signal-to-noise ratio.
 II. SVD can be applied directly to the data
matrix, X, in order to find a linear transform (11).
This is tantamount to using PCA where the matrix
of left singular vectors, QL, corresponds to Q, the
eigenvector matrix of E[x(n)x(n)T], and the matrix
of right singular vectors, QR, corresponds to the
eigenvector matrix of E[x(n)Tx(n)] where,

T

RL
QQX != (4)

and Σ is the matrix of singular values. However,
this is not the only manner in which SVD can be
applied. Alter et al. use SVD to generate a set of
basis vectors (4), which are then used in place of
the gene expression data. This is an interesting
approach, although it raises several questions.
SVD produces left and right eigenmatrices that
differ in dimensionality. The choice of associating
the eigengenes with one of the eigenmatrices and
the eigenarray with the other seems quite
arbitrary. This point is relevant since swapping
these two definitions will produce a different
result. This approach, which imposes a
biorthogonality constraint on the data, is one that
has been called into question many times in the
BSS community (16). Additionally, it is not
surprising that a periodic process can be fit well
with two orthogonal sinusoids having the same
periodicity as the process. This choice of basis
functions is tantamount to approximating a
periodic signal with the first non-dc term of a
Fourier series expansion. Nevertheless, this paper
introduces an intriguing idea and has proven to be
quite thought provoking.
 III. FA/ICA, unlike PCA, includes a specific
model for the noise (10). This is a novel approach
to solving the BSS problem that has only recently
been submitted for publication (12). The FA/ICA
approach for denoising is accomplished using
three steps. The first step is to find the maximum
likelihood estimate of BBT+Γ from the baseline
data, Bu(n)+v(n), where the likelihood is found by
assuming u(n) and v(n) are multi-variate
Gaussian-distributed, the correlation matrix of
v(n), denoted by Γ , is equal to γI, the correlation
matrix of u(n) is I, I is the identity matrix, and γ is
an unknown parameter to be estimated. Due to an
inherent identifiability limitation, B can not be

4 Genetics: Hild Proc. BIOC 218 (2005)

found in this manner since any rotation of B also
maximizes the likelihood for this particular
model. Hence the estimate of B used in the first
step can be expressed as B’=BR, where R is an
unknown rotation. This is not a problem since (1)
the goal is to find BBT and (2) the estimate of BBT
is given by B’B’T=BRRTBT, which by the
definition of a rotation matrix equals BBT. The
second step is similar to the first except that it is
applied to the data where the sources are active. In
this step Bu(n)+v(n) is treated as the noise and the
goal is to find the maximum likelihood estimate of
A, where the likelihood is found by assuming s(n)
is a multi-variate Gaussian-distributed variable
having a correlation matrix equal to I and the
noise has a correlation matrix found from the first
step, namely, BBT+Γ . The second step has the
same identifiability issue as the first so that the
estimate of A is correct up to an unknown rotation
matrix, R. The third step represents s(n) as Ry(n),
where each element of y(n) is assumed to be a
mutually statistically independent variable having
a non-Gaussian distribution and R is a rotation
matrix that is found using ICA, this removing the
ambiguity. Using this approach the cleaned
observations are given by,

)()(nn y'R'A'x = (5)

where A’ , R’, and y’(n) are the estimates of A, R,
and y(n), respectively.
 The first step of FA/ICA essentially estimates
the correlation matrix of the baseline data. This
could be done in the usual fashion, to wit, using
(BU+V)(BU+V)T. The advantage of using FA is
that the number of free parameters required to
estimate this correlation matrix is reduced from
O(Mx

2) to O(MxMs), where Ms is assumed to be
much less than Mx in agreement with a publication
by Holter et al. (5). This is critical for good
estimation of the unknown parameters when the
number of arrays/time points is small relative to
the number of genes. Another nice feature of this
approach is that it eliminates the need for ICA to
separate the sources from the interference since
these are eliminated in the second step. A
straightforward ICA approach attempts to separate
all the elements of both s(n) and u(n), which is
more difficult especially when Mu is large. The
validity of FA/ICA is based on the assumption

that all signals are i.i.d., u(n) and v(n) are
Gaussian, all of the eigenvalues of Γ are
approximately equal, and also that all of the
required conditions of the ICA method are met.
These latter items are addressed when ICA is
discussed below.
 IV. BSP is based on a beamforming approach
that has been used recently to localize neural
sources in magnetoencephalography and
electroencephalography data (2). Unlike FA/ICA,
BSP does not assume a specific noise model.
FA/ICA estimates the statistics of the interfering
signals by using full-rank baseline data. This
requires data to be collected prior to the point
where the experimental conditions are varied.
BSP, on the other hand, uses a reduced-rank
estimate of the sources. Hence the noise statistics
can be approximated as the statistics of the signals
that lie in the null-space of the transformation that
is used to explain the sources. In this respect BSP
is similar to PCA. The difference is that BSP
describes the sources using a set of both spatial
and temporal basis functions that are optimal for
the sources under consideration. Consequently
BSP does not require that the power of As(n) is
large relative to Bu(n)+v(n). It does, however,
require that the basis functions are known or that
good approximations can be obtained using prior
knowledge of the temporal and spatial span of the
sources. For example, if it is known that the
energy of the sources is focused in a specific set
of frequencies then the temporal basis vectors can
be chosen based on the maximum eigenvectors of
the autocorrelation matrix of the sources
represented in the frequency domain and
integrated over the specified frequency range.
This makes the inherent assumption that the
autocorrelation matrix of the sources, which is
unknown, is approximated well by bandpass white
noise.
 In this framework the goal is to approximate the
sources in the space of the observations (as given
by AS, as opposed to estimating the sources in the
space of the sources, which is given by S) by,

T
DHAS !" (6)

where H is a (Mx x L1) matrix whose L1 columns
consist of the spatial basis vectors, D is a (N x L2)
matrix whose L2 rows consist of the temporal

Genetics: Hild
Proc. BIOC 218 (2005) 5

basis vectors, and Θ is the (L1 x L2) reduced-rank
approximation of AS that is found using the
maximum likelihood technique. Once these three
matrices are obtained the estimate of the cleaned
observations is given by,

)()(nn dHx != (7)

where d(n) is the column of DT corresponding to
time n.
 For BSP the signals of interest are described by
the portion of the observations that lie in the space
spanned by the columns of H and the columns of
D. Likewise, the interference, by definition, is the
portion of the observations that lie outside the
space spanned by the columns of H or the
columns of D. Since the same data is used to
estimate both the source and interference
statistics, BSP is more robust to non-stationary
data than the FA/ICA approach. Additionally,
since BSP does not require baseline data it may
require a fewer number of arrays for a given level
of performance.
 V. ICA can be applied to a given dataset in two
fundamentally different ways. The model given
by Equation (1) is appropriate when ICA is
applied to the rows of x(n). This approach seeks to
find the unknown sources, s(n), and the unknown
mixing matrix, A, given only the observations,
x(n). In the second approach ICA is applied to the
columns of the data matrix. In this case the model
should be changed to,

)()(~
~

)(~
~

)(mmmm
TT
vuBsAx ++= (8)

where xT(m) and vT(m) are the mth row of X and V,
respectively, and all other quantities are different
from their counterpart in Equation (1) since they
have different dimensionalities and represent
different signals/systems.
 There are several trade-offs between the row-
wise and column-wise approaches. ICA performs
better if the data length is longer than the
dimensionality. The column-wise approach is
therefore well suited for microarray data since the
dimensionality in this case equals the number of
arrays and the data length is given by the number
of genes. This is, in fact, the reason given by
Liebermeister for chosing the column-wise
approach (6).

 The downside of the column-wise approach is
that that “sources” do not correspond to biological
phenomena. In the row-wise case it may be
surmised that each of the sources is related to a
single response/function. If this is the case and if
there is an unambiguous match between an
externally controlled and/or measured condition
and a source estimate then the associated column
of A directly indicates which genes are used for
that function/response. Whether or not there is a
close match between the experimental conditions
and the source estimates, a threshold can be
applied to the columns of the A matrix to generate
a set of gene clusters or to the rows of A to
generate clusters of functions/responses. The
difference from this approach and performing
traditional clustering on the observation matrix is
that the former can place a single gene into
multiple clusters (this can also be accomplished
with clustering using fuzzy memberships).
Another difference is that, supposing the ICA step
is successful, thresholding the rows/columns of A
should be less sensitive to the mixing that occurs
when genes are regulated by multiple processes.
Row-wise ICA can be used in experiments where
multiple conditions are varied simultaneously,
which is somewhat reminiscent of the advantage
cited for using the two-color fluorescent labeling
system. Another nice feature of the row-wise ICA
approach is that, if one is willing to assume that
the source estimates from a given experiment
represent true sources, these source estimates may
be stored in a database and used in subsequent
experiments. Having the source estimates a priori
reduces the problem of finding A from an ICA
problem to the much simpler multi-variate
regression problem. In addition it allows
researches to compare cell responses from
different tissues or organisms with previously
published work in a manner that is robust to the
mixing that naturally occurs in microarray data.
This is not possible for the column-wise ICA
approach, which is valid only for the dataset on
which it is originally applied.
 Denoising using a standard ICA method
involves three steps. First, the sources and the
interferences must be separated from themselves
and from each other. Second, the outputs of the
ICA method must be categorized into those that
are sources and those that are interference. Third,
the interference components are removed and the

6 Genetics: Hild Proc. BIOC 218 (2005)

ICA outputs are inverse transformed back into the
space of the observations. This is represented
mathematically by,

(n)s'Wx
-1

=)(n (9)

where W is the transformation that separates the
observations and s’(n) is the source estimate
vector with the elements that correspond to
interfering sources replaced with a value of 0.
Also, it is common to use PCA as a preprocessor
to reduce the dimensionality prior to demixing.
Notice that ICA can be used for denoising with or
without FA preprocessing, although the reverse is
not true.
 ICA has a certain minimum set of requirements,
none of which are addressed in either of the
papers by Liebermeister (6) or Saidi et al. (7). For
example, the number of significantly energetic
sources, upper bounded by Ms+Mu, must be less
than or equal to the number of observations, Mx.
This requirement is reduced to Ms < Mx for
FA/ICA. The standard ICA approach also requires
that the sources and interference (sources only for
FA/ICA) are either not Gaussian-distributed or
have unique temporal autocorrelation functions.
More importantly for microarray data are the
requirements for linearity and memory-less
mixing. If a linear model provides a good
approximation of the underlying biological
processes then, to preserve the linearity, one must
not use microarray data generated using a ratio of
expression levels. While it is always possible to
apply ICA to any data, including the case when
ratios are used, the resulting basis functions lose
all biological significance. It is also crucial to
avoid saturation, which can occur both in the cell
and during the data collection process.
 Another concern is whether or not instantaneous
(memory-less) mixtures are appropriate. This is
implicitly assumed both in this paper and in the
papers by Liebermeister and Saidi et al. Actual
cell processes do not occur instantaneously and
can only be approximated to be instantaneous if
the sampling period is chosen sufficiently large
(large relative to the rate at which the impulse
response of the mixing decays to 0, which in turn

depends on the depth of the associated cellular
networks). However, the sample rate must also be
at least twice the highest frequency of any
component having non-negligible energy in order
to prevent aliasing in accordance with the Nyquist
criterion (13). It is possible that these conditions
cannot be simultaneously met and is an item that
deserves further research. The trade-off in sample
rate selection can be avoided by using
Convolutive ICA methods (14), but their level of
performance is significantly lower than that of
instantaneous ICA methods.
 Model Selection and Overfitting. All of the
denoising methods listed above share the problem
of model order selection and the potential problem
of over-fitting the data. Optimal model order
selection is an ill-posed problem that is usually
addressed by human expert intervention. The
potential for overfitting depends on the number of
adaptable parameters relative to the data length. A
general rule of thumb is that there should be at
least 5-10 times as much data as adjustable
parameters.
 The amount of data in all cases considered here
is MxN. The number of adaptable parameters is
Mx

2 for PCA (since it requires estimation of the
autocorrelation matrix), ??? for SVD (using
Alter’s approach), Mx(Ms+Mu)+1 for FA/ICA,
L1L2 for BSP (assuming H and D are known),
Mx(Mx-1) for row-wise ICA (without PCA
preprocessing), and N(N-1) for column-wise ICA
(without PCA preprocessing). As long as Mx >>
N, the most appropriate methods above with
regards to overfitting are column-wise ICA,
FA/ICA, and possibly BSP.

CLUSTERING

The rows of the observation matrix, x(n), can be
clustered with or without the aid of any of the
denoising methods listed above. Besides
denoising, another option to improve the accuracy
of gene identification is to improve the clustering
method. Simple hierarchical clustering methods
are commonly used, although there is no lack of
more sophisticated methods. One such method,
developed by Jenssen et al. (3), is considered

Genetics: Hild
Proc. BIOC 218 (2005) 7

here. This kernel-method approach maximizes the
Cauchy-Schwarz divergence (15) between clusters
(the divergence is an information-theoretic
quantity that is analogous to a distance measure
between probability distributions). The first step
of this method involves mapping the data to a
high-dimensional kernel feature space. In this
space the cosine of the angle between the resulting
cluster vector means is minimized, which is
equivalent to maximizing the Cauchy-Schwarz
divergence when the probability density functions
are estimated using Parzen Window density
estimation. This method has been shown to
perform very well when highly non-linear
decision boundaries are required. However the
performance is fairly sensitive to the user-defined
variable referred to as the kernel size.

MATERIALS AND METHODS

The model given in Equation (1) is used to create
N=200 arrays/time points of data, the first 80 of

 which precede the two externally controlled/
monitored conditions, i.e., temperature and serum
level. The time courses of these Ms=2 sources,
s(n), are damped sinusoids, which are shown in
the top of Figure 1. Each observation vector
consists of the instantaneous gene expression
levels of Mx=250 genes. As shown in Figure 2
each source regulates a total of 100 different
genes, 62 of which are shared. The topmost
subplot in Figure 3 shows the (unobserved) time
courses of the gene expression levels due only to
the sources, As(n), and the subplot directly
inferior shows the observation time courses, x(n),
which include the Ms=2 sources, the Mu=5
interfering sources, and the additive noise. The
source distributions, owing to the damping, are
super-Gaussian and the interfering sources and the
noise both have Gaussian distributions.
 Clustering is performed on the PCA and
FA/ICA denoised data as well as on the original
observations. The results for the latter are denoted

Figure 1. Top: Time courses of the unobserved sources (in sensor space); Second from top:
observed time courses (one for each gene); Third from top: cleaned signal using PCA (L=10);
Bottom: cleaned signals using FA/ICA.

8 Genetics: Hild Proc. BIOC 218 (2005)

F
igure 2. Number of genes regulated by each of the
two sources both individually and collectively.

as the Raw Data results. Two results for PCA are
included. The first uses L=2 maximum
eigenvectors and the second uses L=10. Likewise,
FA/ICA assumes there are Ms=2 sources.
Clustering is performed using both a hierarchical
clustering method known as Unweighted Pair-
Group Method Using Arithmetic Averages
(UPGMA) and the kernel-based information-
theoretic clustering method briefly described in
the previous section, which is referred to as CS
Divergence. The CS Divergence clustering
method uses the affinity matrix (as opposed to the
Laplacian matrix) and the UPGMA method uses
the linear correlation coefficient for the distance
metric. The results for UPGMA are obtained from
the on-line Gene Expression Analysis Suite V1.1
(GEPAS) located at http://gepas.bioinfo.cnio.es/
cgi-bin/cluster.
 Gene identification accuracy is measured by
assigning all the elements of each generated
cluster to one of three classes, i.e., Temperature,
Serum, or Other. Since both clustering methods
generate non-overlapping clusters, the 62 shared
genes are assigned to a single source by
associating each with the source that has the larger
magnitude regulation factor. Using this approach
yields 66 and 72 genes associated with the
Temperature and Serum Level experimental
conditions, respectively. The classification of each
cluster is determined as the class that has the
largest weighted cardinality, where the weighting
equals the inverse of the probability of a gene
belonging to the class in question. For example, if
a particular cluster contains three genes, one gene
from each class, then the cluster is assigned to the
class that has the fewest exemplars. This selection
essentially chooses the class that maximizes the a
posteriori probability given the usual simplifying
assumptions that each gene is drawn

independently from a uniform distribution and the
prior probability equals the number of exemplars
divided by Mx. Since knowledge of the true class
of each gene is required, this approach is not
feasible to use in practice and it represents an
upper bound to performance given the specific
cluster labels.
 The blind separation approach is also used for
gene identification. The columns of the estimated
A matrix generated by FA/ICA are used without a
clustering method to directly form two
overlapping clusters (this could also be performed
on the rows of A to group genes according to gene
expression modes). Since overlapping clusters are
allowed with this linear model approach, the
performance metric may be based on two 2-class
assignments. In the first assignment all the genes
are classified as either regulated by Temperature
or not regulated by Temperature. The second
assignment is identical to the first except it
concerns the Serum Level experimental condition.
Hence there is no restriction that prevents clusters
associated with Temperature from overlapping
those associated with Serum Level. Using this
information two ROC curves are generated.

RESULTS

Figure 4 shows the original set of gene expression
data and Figures 8, 9, and 10 (in the Appendix)
show the cleaned expression data that result from
the PCA (L=2), PCA (L=10), and FA/ICA
methods, respectively. The hierarchical UPGMA
clustering results are shown in each figure to the
left of the associated gene expression data. The
time courses of the cleaned gene expression data
(source estimates in the space of the sensors) are
shown in Figure 3 and Figure 1 shows the source
estimates (in source space) for FA/ICA. This latter
plot does not apply for PCA or for the Raw Data.
In this example FA/ICA is able to recover blindly
good approximations of the true sources even
though they are not visible in the original data.
 Figure 5 is a plot of the accuracy of the
clustering results as a function of the number of
clusters when UPGMA is used. Using this
clustering algorithm PCA (L=10) performed
slightly better than the other three. The tendency
for all methods is for the accuracy to improve as
the number of clusters increases. This is a
consequence of the fact that the class of each

Temperature

Serum Level

38 38 62

Genetics: Hild
Proc. BIOC 218 (2005) 9

cluster is optimally chosen and, as the number of
clusters increases, the number of genes in each
cluster approaches one. It is trivial to show that
the accuracy, under these conditions, approaches
100%. Figure 6 is identical to Figure 5 except that
it pertains to the CS Divergence clustering
method. In this case FA/ICA performs best. The
results for this clustering algorithm are 15-20%
better than that produced by UPGMA.
 Figure 6 shows the two ROC curves for FA/ICA
that result from applying a threshold to each
column of the estimate of the A matrix. Recall that
each column corresponds to one of the
experimental conditions and the Mx elements of
each column represent the degree to which the cell
response to a given experimental condition
regulates each gene. The resulting ROC curve for
the Temperature response cannot be seen since the
true positive rate equals 100% before the first
false positive is found, which represents the best
performance achievable. Likewise, the ROC curve
for the Serum Level is nearly perfect.

DISCUSSION

A simple generative model is introduced in order
to compare denoising methods, clustering
algorithms, and column thresholding for the
purpose of gene identification. For the simpler
clustering algorithm, PCA (L=10) performs well.
Even though there are only two sources PCA
(L=2) performs worse than PCA (L=10). This is
not surprising since the signal-to-noise ratio is
very low in this example, so that the maximum
eigenvectors are not guaranteed to be associated
with the sources of interest. It is also not
surprising that the performance of the CS
Divergence clustering algorithm is noticeably
better than the simple UPGMA method. What
may be surprising is how well the linear model
approach to gene identification performs, although
any excitement must be tempered by the fact that
the FA/ICA model is identical to the generative
model by which the data is produced. It remains to
be seen whether, or how good, this generative
model applies to real microarray data. Initial
results were collected using N=1000 arrays (not
shown). It was originally believed that the array
size would need to be this large in order for these
statistical signal processing techniques to show a
noticeable improvement over existing cluster-only

methods. The results of using N=1000 were
exemplary so the value of N was reduced to 200
for all results shown here. However, this value is
still prohibitively large by today’s standards.

1. M.B. Eisen, P.T. Spellman, P.O. Brown, and D.

Botstein, “Cluster analysis and display of genome-wide
expression patterns,” Proc. Natl. Acad. Sci., Vol. 95, pp.
14863-14868, Dec. 1998.

2. B.V. Baryshnikov, B.D. Van Veen, and R.T. Wakai,
“Maximum likelihood estimation of low rank signals for
multiepoch MEG/EEG analysis,” IEEE. Trans. Biomed.
Engr., Vol. 51, No. 11, pp. 1981-1993, Nov. 2004.

3. R. Jenssen, D. Erdogmus, J.C. Principe, and T. Eltoft,
“Spectral clustering based on information theory and
Parzen windowing,” preprint.

4. O. Alter, P.O. Brown, and D. Botstein, “Singular value
decomposition for genome-wide expression data
processing and modeling,” Proc. Natl. Acad. Sci., Vol.
97, No. 18, pp. 10101-10106, Aug. 2000.

5. N.S. Holter, A. Maritan, M. Cieplak, N.V. Federoff, and
J.R. Banavar, “Dynamic modeling of gene expression
data,” Proc. Natl. Acad. Sci., Vol. 98, No. 4, pp. 1693-
1698, Feb. 2001.

6. W. Liebermeister, “Linear modes of gene expression
determined by independent component analysis,”
Bioinfomatics, Vol. 18, No. 1, pp. 51-60, 2002.

7. S.A. Saidi, C.M. Holland, D.P. Kreil, D.JC MacKay,
D.S. Charnock-Jones, C.G. Print, and S.K. Smith,
“Independent component analysis of microarray data in
the study of endometrial cancer,” Oncogene, Vol. 23,
pp. 6677-6683, 2004.

8. A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P.
Holmes, and S.P.A. Fodor, “Light-generated
oligonucleotide arrays for rapid DNA sequence
analysis,” Proc. Natl. Acad. Sci., Vol. 91, pp. 5022-
5026, May 1994.

9. J.F. Cardoso, “Blind signal separation: Statistical
principles,” Proc. IEEE, Vol. 86, No. 10, pp. 2009-
2025, Oct. 1998.

10. H. Attias, “Independent factor analysis,” Neural
Computation, Vol. 11, pp. 803-851, 1999.

11. S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-
Hall, Englewood Cliffs, NJ, 2001.

12. K. Hild, H. Attius, K. Sekihara, and S.S. Nagarajin, “A
Graphical Model for Estimating Stimulus-Evoked Brain
Responses in Noisy MEG data with Large Background
Brain Activity,” Submitted to Intl. Conf. on
Bioelectromagnetism (BEM&NFSI ‘05), May 2005.

13. J.G. Proakis, Digital Communications, 3rd ed.,
McGraw-Hill, Inc., Boston, MA, 1995.

14. K.E. Hild II, D. Pinto, D. Erdogmus, and J.C. Principe,
“Convolutive blind source separation by minimizing
mutual information,” Submitted to IEEE Trans. Circuits
and Systems I, June 2004.

15. T.M. Cover and J.A. Thomas, Elements of Information
Theory, John Wiley & Sons, Inc., New York, NY, 1991.

16. S. Makeig, T. Ping, A. Bell, D. Ghahremani, and T.J.
Sejnowski, “Blind separation of auditory event-related
brain responses into independent components,” Proc.
Natl. Acad. Sci., Vol. 94, pp. 10979-10984, Sept. 1997.

Proc. BIOC 218
Vol. 1, pp. 1-20, March 2005
Genetics

10

Figure 3. Top: Unobserved sources (in source space); Bottom: source estimates using FA/ICA.

Figure 4. Gene expression matrix of the unprocessed
data. The UPGMA clustering is shown on the left.

Genetics: Hild
Proc. BIOC 218 (2005) 11

Figure 5. Accuracy as a function of the number of clusters for the UPGMA clustering method.

Figure 6. Accuracy as a function of the number of clusters for the CS Divergence clustering method.

12 Genetics: Hild Proc. BIOC 218 (2005)

Figure 7. ROC curves for the Temperature and Serum Level experimental conditions using the blind
separation method of thresholding the columns of the estimate of A.

Genetics: Hild
Proc. BIOC 218 (2005) 13

APPENDIX

Figure 8. Gene expression data of cleaned data Figure 9. Gene expression data of cleaned data
using PCA (L=2). using PCA (L=10).

14 Genetics: Hild Proc. BIOC 218 (2005)

Figure 10. Gene expression data of cleaned data
using FA/ICA.

Genetics: Hild
Proc. BIOC 218 (2005) 15

Matlab code used to generate and analyze the gene expression data:

clear all
N = 250; % total genes
L = 200;

randn('state',5);
rand('state',5);

% generate s, sc
[jnk,jnk0,jnk1,jnk2,jnk3,jnk4,jnk5,jnk6,jnk7,jnk8,jnk9,jnk10,jnk11,s] =
create_lead_field(275,2,0,0,10,[],'x=0',L,9,7);
s(3:7,1:L)=randn(5,L);
s(1:2,:)=s(1:2,:)*2;

% t, pre, post
t=(-80:119)/60; % time in hours
pre=find(t<0);post=find(t>=0);

% geneset
K = 50; % multiple of 10
for a=1:2,r=randperm(N-50);geneset{a}=[1:K sort(r(1:50))+K];end % temp_tot = geneset{1}, serum_tot
= genest{2}
for a=3:7,r=randperm(N-50);geneset{a}=[1:K sort(r(1:50))+K];end

% A, Ac
A=zeros(N,7); for a=1:10:K, tmp=sign(randn(1,7)).*(1+rand(1,7)); A(a:a+9,:)=repmat(tmp,10,1); end
for a=1:7, lng=length(geneset{a})-K; tmp=sign(randn(lng,1)).*(1+rand(lng,1));
A(geneset{a}(K+1:end),a)=tmp; end
A=A/50;

% temp/serum genes
f=zeros(1,N);f(geneset{1})=1; f2=zeros(1,N);f2(geneset{2})=1; f3=find(f.*f2==1);
f(f3)=0; temp_uni=sort([find(f==1) find(abs(A(f3,1))>=abs(A(f3,2)))']);
f2(f3)=0; serum_uni=sort([find(f2==1) find(abs(A(f3,1))<abs(A(f3,2)))']);
temp_ndx=zeros(1,N);temp_ndx(temp_uni)=1;
serum_ndx=zeros(1,N);serum_ndx(serum_uni)=1;

% mux, muxc, noise, noisec
mux=0.2*rand(1,N)+0.4;mux=repmat(mux,L,1)';
noise=randn(N,L)*0.02;

% s, x
x=A*s+noise;
xs=x+mux; f=find(xs<0);xs(f)=1e-3;f=find(xs>1);xs(f)=1;

% yproj, yprojc
[yproj,sbar,w,jnk,jnk1,jnk2,jnk3,b0,lam0,alp0,g0]=sefaica(x(:,pre),x(:,post),[],0,2,'peaky');

% clusters
z2=A(:,1:2)*s(1:2,post);f=find(sum(abs(z2'))==0);z2(f,1)=1e-3;

16 Genetics: Hild Proc. BIOC 218 (2005)

z3=w(:,1:2)*sbar;
h=zeros(1,250);for
a=1:N,h(a)=x(1,post)*x(a,post)'/600/sqrt(cov(x(1,post))*cov(x(a,post)));end,figure(7),clf,plot(h),hold
on,axis([0 100 -0.2 0.2])
h2=zeros(1,250);for a=1:N,h2(a)=z2(1,:)*z2(a,:)'/600/sqrt(cov(z2(1,:))*cov(z2(a,:)));end,plot(h2,'k')
h3=zeros(1,250);for a=1:N,h3(a)=z3(1,:)*z3(a,:)'/600/sqrt(cov(z3(1,:))*cov(z3(a,:)));end,plot(h3,'r')

% saturation image
q=5*log2(abs((xs(:,post))./repmat(xs(:,pre(end)),1,length(post))));f=find(q>3);q(f)=3;f=find(q<-3);q(f)=-
3;
figure(1), clf,colormap gray,imagesc(q)
dim=2; [z,w,w2]=white(q,dim); q=w2*w'*q; % PCA
q=1*squeeze(yproj(:,:,1))+1*squeeze(yproj(:,:,2));q=q*8/max(max(abs(q))); % FA/ICA

% create data.txt file
y=double(['#NAMES']);
for a=post, y=[y 9 double(num2str(a))]; end, y=[y 10];
tmp=zeros(1,10000);
kk=[];for a=1:size(q,1), y=[y double('Gene_') double(num2str(a))];
 aaa=1; for aa=1:size(q,2), tmp2=[9 double(sprintf('%10.20f',q(a,aa)))]; tmp(aaa:aaa+length(tmp2)-
1)=tmp2; aaa=aaa+length(tmp2); end, y=[y tmp(1:aaa-1) 10]; end
fid=fopen('/home/hild/data.txt','w');
fwrite(fid,y);fclose(fid);

% read data.nw
fid=fopen('/home/hild/data.faica.nw');
y=fread(fid);fclose(fid); y=y'; y=[y 32*ones(1,10)];
mx_val=0; tmp=0; for a=1:length(y), if y(a)==40, tmp=tmp+1; if tmp>mx_val, mx_val=tmp; end, elseif
y(a)==41, tmp=tmp-1; end, end
cor_mat=NaN*ones(N,mx_val);
for a = 1:N
 f = findstr(char(y),['Gene_' int2str(a) ':']);
 f2 = find(y(f+5:end)==58) + f+5-1;
 f3 = find(y(f+5:end)==44 | y(f+5:end)==41) + f+5-1;
 f4 = length(find(y(f3(1)-1:end)==41)) - length(find(y(f3(1)-1:end)==40));
 cor_mat(a,mx_val+1-f4) = str2num(char(y(f2(1)+1:f3(1)-1)));
 if y(f3(1))==41, f3(1)=f3(1)-1; end % offset when f3(1) == ")"

 done = 0;
 pcnt = 0;
 while ~done
 f3 = find(y(f3(1)+1:end)==41 | y(f3(1)+1:end)==40) + f3(1)+1-1;
 if isempty(f3), done=1;
 elseif y(f3(1))==40, pcnt=pcnt+1;
 elseif y(f3(1))==41 & pcnt>0, pcnt=pcnt-1;
 elseif y(f3(1))==41 & pcnt<=0
 f2 = find(y(f3(1)+1:end)==44 | y(f3(1)+1:end)==41) + f3(1)+1-1;
 if isempty(f2), done=1;
 else f3 = find(y(f3(1)+1:end)==58) + f3(1)+1-1;
 f4 = length(find(y(f2(1)-1:end)==41)) - length(find(y(f2(1)-1:end)==40));
 cor_mat(a,mx_val+1-f4)=str2num(char(y(f3(1)+1:f2(1)-1))); f3=f2(1);

Genetics: Hild
Proc. BIOC 218 (2005) 17

 if y(f3(1))==41, f3(1)=f3(1)-1; end % offset when f3(1) == ")"
 end
 end
 end
end
f=find(isnan(cor_mat)==1); cor_mat(f)=0;
cor_mat=cumsum(cor_mat')'; cor_mat(f)=NaN;

% create clustermap
corr_ndx=sort(DEL(cor_mat(:)))'; f=find(isnan(corr_ndx)==1); corr_ndx(f)=[];
cluster=cell(length(corr_ndx)-1,N);
mx_ndx=0;
for a=1:length(corr_ndx)-1
 ndx=1; gene_ndx=ones(1,N);
 f=find(abs(cor_mat-corr_ndx(a)) < 1e3*eps);
 if length(DEL(ceil(f/N))) > 1, disp(' '); disp('Duplicate values found in different columns'), disp(' '); end
 tmp = sort(DEL(rem(f-1,N)+1))';
 row=rem(f(1)-1,N)+1; col=ceil(f(1)/N);
 f2 = find(cor_mat(row,col+1:end) < corr_ndx(a)) + col+1-1;
 for aa=1:length(f2), tmp=DEL([tmp'; find(abs(cor_mat(:,f2(aa))-cor_mat(row,f2(aa))) < 1e3*eps)])';
end
 cluster{a,ndx}=tmp; ndx=ndx+1; gene_ndx(tmp)=0;

 done = 0;
 while ~done
 f=find(gene_ndx==1);
 if isempty(f), done=1;
 else f2=find(cor_mat(f(1),:) < corr_ndx(a));
 if isempty(f2), cluster{a,ndx}=f(1); ndx=ndx+1; gene_ndx(f(1))=0;
 if ndx > mx_ndx, mx_ndx=ndx; end
 else
 tmp=f(1);
 for aa=2:length(f)
 f3=find(abs(cor_mat(f(aa),:)-cor_mat(f(1),f2(end))) < 1e3*eps);
 if length(f3)>0, tmp=[tmp f(aa)]; end
 end
 cluster{a,ndx}=tmp; ndx=ndx+1; gene_ndx(tmp)=0;
 if ndx > mx_ndx, mx_ndx=ndx; end
 end
 end
 end
end
cluster(:,mx_ndx+1:end)=[];

s(1,post)=center(s(1,post));
s(2,post)=center(s(2,post));
Lpost=1/length(post);
thresh=0.5;

% determine percent correctly classified
zz=zeros(1,size(cluster,1));

18 Genetics: Hild Proc. BIOC 218 (2005)

for a=1:size(cluster,1), aa=1; while ~isempty(cluster{a,aa}), aa=aa+1; end, zz(a)=aa-1; end
av=1:size(cluster,1);
truepos=zeros(1,length(av)); k=1;
truepos2=zeros(1,length(av)); k=1;
zscore=1./[sum(serum_ndx) sum(temp_ndx) N-sum(serum_ndx)-sum(temp_ndx)];
for a=av
 aa=1;
 while ~isempty(cluster{a,aa})
 LL=length(cluster{a,aa});
 z=[sum(serum_ndx(cluster{a,aa})) sum(temp_ndx(cluster{a,aa}))];z=[z LL-
sum(z)];[val,pos]=max(z.*zscore);
 rho1=sum(abs(diag(center(q(cluster{a,aa},:))*repmat(s(1,post),LL,1)')))*Lpost;
 rho2=sum(abs(diag(center(q(cluster{a,aa},:))*repmat(s(2,post),LL,1)')))*Lpost;
 if max([rho1 rho2]) > thresh*LL
 if rho1>rho2, truepos2(k)=truepos2(k)+z(2);
 else truepos2(k)=truepos2(k)+z(1);
 end
 else truepos2(k)=truepos2(k)+z(3);
 end
 truepos(k)=truepos(k)+z(pos);
 aa=aa+1;
 end
 k=k+1;
end
truepos=truepos/N;
truepos2=truepos2/N;

f=find(zz<=3*15);plot(zz,truepos,zz(f(1)),truepos(f(1)),'*')
figure(1),plot(zz,truepos,'k'), hold on
round(max(truepos(f(1):end))*1000)/10

% information cut and Kmeans clusters
av2=2:19;
k=1;
truepos_ic=zeros(1,length(av2));
truepos2_ic=zeros(1,length(av2));
for a=av2
 [labels_ic]=jenssen_InformationCut(q','trad',0,-1,'ic',a,a,1);
 for aa=1:a
 f=find(labels_ic==aa); LL=length(f);
 z=[sum(serum_ndx(f)) sum(temp_ndx(f))];z=[z LL-sum(z)];[val,pos]=max(z.*zscore);
 rho1=sum(abs(diag(center(q(f,:))*repmat(s(1,post),LL,1)')))*Lpost;
 rho2=sum(abs(diag(center(q(f,:))*repmat(s(2,post),LL,1)')))*Lpost;
 if max([rho1 rho2]) > thresh*LL
 if rho1>rho2, truepos2_ic(k)=truepos2_ic(k)+z(2);
 else truepos2_ic(k)=truepos2_ic(k)+z(1);
 end
 else truepos2_ic(k)=truepos2_ic(k)+z(3);
 end
 truepos_ic(k)=truepos_ic(k)+z(pos);
 end

Genetics: Hild
Proc. BIOC 218 (2005) 19

 k=k+1;
end
truepos_ic=truepos_ic/N;
truepos2_ic=truepos2_ic/N;

plot(av2,truepos_ic,'k')
[round(max(truepos_ic)*1000)/10 round(max(truepos_km)*1000)/10]

%%%%%%%%%%%%%%%%%%%%

tv = 0:0.01:1;
temp_tp = zeros(1,length(tv));
temp_fp = zeros(1,length(tv));
serum_tp = zeros(1,length(tv));
serum_fp = zeros(1,length(tv));

www=w*inv(g0);
if 1==1
 tmp=www(:,1);
 www(:,1)=www(:,2);
 www(:,2)=tmp;
end

k=1;
mx1 = max(www(:,1));
mx2 = max(www(:,2));
for thresh = tv
 f = find(abs(www(:,1)) > thresh*mx1);
 temp_tp(k) = length([geneset{1}';f]) - length(DEL([geneset{1}';f]));
 temp_fp(k) = (length(f) - temp_tp(k))/150;
 temp_tp(k) = temp_tp(k)*0.01;

 f = find(abs(www(:,2)) > thresh*mx2);
 serum_tp(k) = length([geneset{2}';f]) - length(DEL([geneset{2}';f]));
 serum_fp(k) = (length(f) - serum_tp(k))/150;
 serum_tp(k) = serum_tp(k)*0.01;

 k = k + 1;
end

figure(1),plot(temp_fp,temp_tp,'k',serum_fp,serum_tp,'k')
xlabel('False Positives','fontsize',12),ylabel('True Positives','fontsize',12)

%%%%%%%%%%%%%%%%%%

function [A,x] = fa(seednum,noise_pow)

% factor analysis
% y = Ax + v

L=5;

20 Genetics: Hild Proc. BIOC 218 (2005)

M=275; N=1000;
randn('seed',seednum);
Atrue=randn(M,L);
y=Atrue*randn(L,N) + randn(M,N)*sqrt(noise_pow);

% definitions
max_iter = 1000; [M,N] = size(y);

% initial conditions
[V,D,flg] = eigs(y*y'/N,L);
if flg ~= 0, disp(' '); error('Eigs did not converge'), end
A = V*D.^(0.5); Anew = A;
Lambda = 2*diag(1./diag(y*y'/N));
wmtrx = [A(:) zeros(M*L,max_iter+1)];
invpowAAtrue = 1/sum(sum((Atrue*Atrue').^2));
err = [sqrt(sum(sum((Atrue*Atrue'-A*A').^2))*invpowAAtrue) zeros(1,max_iter+1)];

done = 0;
iter = 0;
while ~done
 % E-step
 Gamma = A'*Lambda*A + eye(L);
 invGamma = inv(Gamma);
 x = invGamma*A'*Lambda*y;

 % Sufficient statistics
 Rxy = x*y';
 Rxx = x*x' + N*invGamma;
 Ryy = y*y';

 % M-step
 Anew = Rxy'*inv(Rxx);
 Lambda = N*diag(1./diag(Ryy-A*Rxy));

 powAAnew = sum(sum((Anew*Anew').^2));
 rel_dif = sqrt(sum(sum((Anew*Anew'-A*A').^2))/powAAnew);
 A = Anew;
 iter = iter + 1;
 wmtrx(:,iter+1) = A(:);
 err(iter+1) = sqrt(sum(sum((Atrue*Atrue'-A*A').^2))*invpowAAtrue);

 if rel_dif < 1e-3 | iter >= max_iter
 done = 1;
 if iter >= max_iter, disp(' '), disp('Did not finish converging'); end
 end
end
wmtrx(:,iter+2:end) = [];
err(:,iter+2:end) = [];
err(end)

figure,subplot(2,1,1),plot(wmtrx'),subplot(2,1,2),plot(err)return

