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Protein Structure Prediction 
 
Proteins are building blocks of life. Proteins exhibit more sequence and chemical 
complexity than DNA or RNA. A protein sequence is a linear hetero polymer made up of 
one of the 20 different amino acids. They perform a wide variety of functions in the 
living organism, playing various catalytic, structural, regulatory and signaling roles 
required for the cellular development, differentiation, replication and survival. The key to 
the wide variety of functions exhibited by the individual proteins is not its linear 
sequence but its three dimensional structure. The knowledge of the 3D structure is useful 
for rational drug design, protein engineering, detailed study of protein –bio-molecular 
interactions, study of evolutionary relationship between proteins or protein families etc. 
 
The 3D structure of proteins can be solved by 1) Experimental methods, or 2) Structure 
prediction. Solving structures experimentally is very hard. Solving through X-ray 
crystallography produces very good results but we need to have a very pure protein 
sample which must form crystals that are relatively flawless. Solving through NMR is 
limited to small soluble proteins. In addition, large scale sequencing projects like the 
human genome project produce protein sequences at a very fast rate. Thus there is a huge 
gap between the number of known protein sequences and the number of solved 
structures. Protein structure prediction aims at reducing this gap. 
 
Protein structure prediction is not as easy as it sounds. There are a number of facts that 
exist that make structure prediction a difficult task. 

• There are a number of ways a protein could fold to attain the native state. 
• The physical basis of protein structural stability is not fully understood. 
• The primary sequence may not fully specify the tertiary structure. There are 

proteins called chaperones that induce the protein to fold in specific ways. E.g.: 
the chaperons help in the folding of the heat shock proteins. 

Steps Involved in Prediction 
Although there are many methods and algorithms to predict the structure, the general 
steps involved can be summarized as follows 
Prediction in 1D involves 

• Prediction of secondary structure(SSP) 
• Prediction of solvent accessibility 
• Prediction of trans-membrane helices 

Prediction in 2D involves 
• Prediction of the inter-residue and strand contacts 

Prediction in 3D involves 
Searching the database to find a suitable template for modeling. 
If the sequence identity is ≥ 25% then modeling is carried out through homology 
modeling. If the sequence identity is <25 then the model is obtained through fold 
recognition or threading. If no suitable template is found then structure is predicted using 
Ab-initio prediction. 



Secondary structure prediction 
The secondary structure of a protein has three regular forms, an alpha helix, a beta sheet 
and loop or turns. SSP involves predicting the secondary structure state for each amino 
acid residue. The most widely used accuracy index for SSP is the three state accuracy 
which gives the percentage of the correctly predicted residues in any of the three states. 
Q=(Pα + Pβ + Ploop)/T  x 100 
Where T is the total number of residues, Pα   is the number of residues predicted correctly 
to be in alpha helix, Pβ  is the number of residues predicted correctly to be in beta sheet 
and Ploop is the number of residues predicted correctly to be in loops or turns. The quality 
of the prediction is assessed by the number of segments in a protein, the average segment 
length and the distribution of the number of segments with the length. 

First generation SSP 
Most of the methods in this generation were based on single residue statistics. In the 
Chou-Fasman method developed in 1974, the residues were aligned according to their 
ability to form or break a secondary structure. They were classified into strong formers, 
weak formers, formers, indifferent formers, strong breakers and breakers. He identified 
an alpha helix by locating a cluster of 4 formers or strong formers within 6 residues 
which was extended in both directions until terminated by a tetra-peptide with an average 
alpha propensity of less than 1. For beta sheets, he looked in a cluster that had 3 out of 5 
formers and strong formers and then extended in both directions. Turns were predicted in 
a window of 4 residues first with an overall score that is significantly greater than that for 
helix or strand and then by a position specific score for each of the 4 residues in reverse 
turn. 
 
The GOR algorithm (Garnier, Osuguthorpe, and Robson) was developed in 1978 to 
improve upon the Chou-Fasman method. The GOR method not only took the relative 
occurrence of residue in a particular element of the structure but also took the accuracy of 
the data into consideration. The method first analyzed the protein of a known structure 
based on the query. It then considered the effect that a residue has on the secondary 
structure of another residue say ‘n’ residues from it. This gave the likelihood of a residue 
and its neighbors being in particular secondary structure. This information is used to scan 
the protein using a sliding window of 17 residues and assigning a value to each residue 
which expresses the likelihood of it being in a particular secondary structure. 

Second generation SSP 
These methods depended on sequence structure relationship and modeled using 
algorithms based on statistical information, physio-chemical properties, sequence 
patterns, multilayered neural networks, graph theory, multivariate statistics and nearest 
neighbor algorithm. The neural network based algorithm by Qian and Sejnowksi 
predicted the alpha helix and beta sheet of 15 test proteins. The neural network had 3 
layers with 40 hidden layers and 13 input residues. The output of the first network was 
fed into a second neural network.  
 
Although the first generation method gave an accuracy of 50-60% and the second 
generation methods gave an improved accuracy of about 70%, these method had some 



drawbacks. This may be due to 2 reasons namely the secondary structures differ even 
between crystals of the same protein. Moreover the long range interaction plays a role in 
secondary structure formation. 

Third generation SSP 
These methods were superior in terms of accuracy and also dealt with the drawbacks of 
the other two generation. Their accuracy is about 76%. In PREDATOR the secondary 
structure propensities is based on both local and long range effects, utilizing the similar 
sequence information in the form of pair wise alignment fragments and relying on a large 
collection of known proteins. PHD developed by Rost and Sander in 1993 is composed of 
several cascading neural networks. In the neural network, aligned homologous sequences 
of known structures are used to "train" the network, which then can be used to predict the 
secondary structure of the aligned sequences of the unknown protein. The homologous 
sequences are determined by BLAST and are aligned using MaxHom. In the first step, 
the occurrence of various residues in a window of 13 amino acids is correlated with the 
secondary structure of the central residue. In the second step (structure-structure layer), 
the output from the first layer in a window of 17 residues is used to predict the secondary 
structure of the central residue. In this case, the network will be trained not to predict 
unreasonably short segments of secondary structure. Another step consists of averaging 
the output from independently trained network. Others that predict via neural networks 
and PSSM are PHDhtm, TMAP, and TMpred etc. Some of the best secondary structure 
prediction programs are PHD with an approximate 72% accuracy, Jpred with about 73-
75% accuracy, PREDATOR with about 75% accuracy, Sam T99 with about 74% 
accuracy. 
 
One of the difficulties in predicting secondary structures at high accuracy is the presence 
of non-local contacts in protein folding. This is because amino acids which are quite 
distant in the primary sequence may be close to each other in the 3D structure as the 
protein folds. Bayesian network which is based on parameterization of the sequence 
structure relationship in terms of structural segments can be used for predicting secondary 
structures. 

Prediction of solvent accessibility 
Usually non-polar amino acids tend to be buried inside the protein and the polar amino 
acids are in contact with the solvent. The solvents in a cell are usually vehicle for 
transporting metabolites to protein active sites. Hence determination of solvent 
accessibility is an important to find out how much of a particular amino acid is in contact 
with the solvent and how frequently does the amino acid of that type occur in a site with 
that degree of accessibility. The accuracy used is a two state per residue accuracy 
depending on whether a residue is exposed (relative solvent accessibility >16%) or buried 
(relative solvent accessibility < 16%). Although residue solvent accessibility is not as 
well conserved within a structural family as secondary structure, prediction can be 
improved by including evolutionary information. A neural network prediction of 
accessibility has been shown to be superior to simple hydrophobicity analyses. Prediction 
of solvent accessibility has been used successfully in prediction based threading as well. 
The average accuracy of predicting the solvent accessibility is around 70-75% 



 
Prediction of Trans-membrane helices 
 There are two main classes of membrane protein  

• Protein with long about 17 to 27 residue forming transmembrane helices that 
spans the membrane 

• Porins which form a 16 strand beta barrel fold that forms a pore through the 
membrane. 

Predicting the location of the trans-membrane helix is a task comparable to the secondary 
structure prediction. Accuracy has been improved by combing hydrophobicity analyses, 
statistical information and multiple sequence information. The hydropathic profiles of a 
protein are calculated by assigning each amino acid a “hydropathy index” and then 
averaging the values along the peptide chain. The values assigned can be either Hoop-
wood values or the Kyle-Doolittle values. Another way is by calculating the hydrophobic 
moment which is a measure of the amphilicity or asymmetry or hydrophobicity of the 
polypeptide chain. An alpha helix has a periodicity of 3.6 , hence the residues at position 
i,i+3,i+4,i+7 etc will lie on the exposed face of the helix . Similarly the beta strands that 
are half buried in the protein core will tend to have hydrophobic residues at i,i+2,i+4, and 
polar residues at i+1,i+3 etc. Some of the programs that predict the topology of 
membrane proteins are TMHMM, PHDhtm ,TOPPred2 etc. 

Prediction of inter-residue and strand contacts 
The NMR spectroscopy produces experimental data of distances between the protons. 
Using these distances, the 3D structure can be reconstructed using distance geometry or 
molecular dynamics. Hence if the secondary structure can be predicted successfully, 
some fraction (helices and strands which can be assigned based on hydrogen bonding 
pattern) of the contacts is known and its 3D structure can be determined by distance 
geometry. But the contacts predicted by secondary structure are short range contacts. For 
application of distance geometry, contacts between residues far apart in sequence should 
also be considered. One of the methods to predict such long range inter-residue contacts 
is by analyzing correlated mutations. Other methods use statistics, mean-force potentials, 
or neural networks. 

One way to simply the problem to predict inter-residue contacts is by predicting the 
contacts between residues in adjacent strands. This is because such interactions are more 
specific than the long range contacts and thus easier to predict. One method to predict the 
inter-strand contact is by mean force potentials which can be improved by using multiple 
sequence alignment information. 

Prediction in 3D 
The tertiary structure of proteins involves the folding of the secondary structural 
elements. The physical properties that determine fold are the backbone rigidity, 
interaction between the amino acids which include the electrostatic interaction, the 
vander-waals interaction, hydrogen and disulphide bonds and interaction with water. 
There are three methods for protein structure prediction namely 1) homology modeling 2) 
Fold recognition or threading and 3) Ab-initio method. All these methods involve 
searching the database for a homologue to the target protein. If the sequence similarity 



between the template and the target is ≥ 25% then comparative or homology modeling is 
carried out. If the sequence similarity is < 25% the prediction is done thorough fold 
recognition or threading. If no suitable homologue it found in the database then the 3D 
structure is predicted through ab-initio predictions. Template selection and alignment 
accuracy have a large impact on the model accuracy. If there is a 90% or more sequence 
similarity between the template and target then the errors of the final model are as low as 
that obtained from X-ray crystallography except for some side chain errors. For template 
sequence identity between 30-50%, 90% of the main chain can be modeled with 1.5 Ao 

RMSD. The quality of the model is limited by side chain packing, core distortion and 
loop modeling. For template sequence identity <25% accuracy of the alignment is the 
main limiting factor for errors. 

Critical Assessment of Structural Prediction (CASP) 
The idea to test the different prediction methods in a blind manner which enables a direct 
comparison of a protein model to its real structure was the basis of CASP experiments 
initiated by John Moult in 1994. CASP is held every two years and the next one CASP6 
is to be held in December 2004. In CASP a few dozen proteins of known sequence but 
unknown structure are used as prediction targets. Contestants are to predict the structure 
of protein using different algorithms and different methods- homology, fold recognition 
and ab-initio. Subsequently once the 3D structure is released an assessment of the 
accuracy of the predictions is carried out. CASP concludes with a meeting in Asilomar to 
discuss the results. 

Servers 
There are various servers available for performing these modeling. The models generated 
from each one of them may be different. This actually depends on the templates chosen, 
the alignment of the query protein with the template and also the algorithm or the method 
used in their prediction. The Live Bench Project is a continuous benchmarking program. 
Every week it evaluates the sensitivity and specificity of the different servers. Some of 
the servers that did well in both comparative and fold recognition modeling in CASP4 
and CASP5 were 3DPSSM,FFAS,mgenthreader, inbgu and samT99 .  

Meta servers 
Metaservers are servers that make their predictions based on the results of two or more 
different methods. Some simply look for consensus prediction between several methods 
while others calculate their own scores based on the results that they get back from the 
server. Some of the metaservers are shotgun on 3 , shotgun on 5, Pcons, Pmodeller etc 
Metaservers helped many groups to win in CASP5.  

Homology modeling 
Homology modeling is based on the fact that if two sequences have a high sequence 
similarity then they have similar 3D structure. But this is always not the case. Two 
sequences which don’t share much sequence similarity do have similar folds. This zone 
that defines low sequence similarity (15-30%) between target and template was termed 
by Doolittle (1986) as the Twilight zone. The steps in homology based predictions are 



• Database search: Use the query sequence to search the database for known 
protein structures. This can be done by BLAST which does a pair-wise 
comparison .PSIBLAST and HMM  which is profile based are better as they will 
be able to detect remote homologues as well 

• MSA: Multiple sequence alignment of the query protein to the templates and 
identify structurally conserved region (SCR), active site residues, disulphide 
bridges, salt bridges. Most of the search methods are tuned to detect remote 
homologous and not for optimal sequence alignment. The alignment is a simple 
sequence-sequence alignment for sequence identity >40%, but for sequence 
identity <40% the alignment has gaps. In such cases, manual intervention through 
the knowledge of structural information can give better alignments. It should be 
seen that there are no gaps in the SCR or in secondary structural regions. The 
insertions should nor be buried in the secondary structure region but rather be at 
the ends or in loops. Within the homologous proteins secondary structures can 
move relative to each other or even disappear but neither the order not the 
orientation should differ- an alpha helix cannot be a beta sheet. 

• Main chain modeling: This involves exchanging the residues in the template to 
that of the target in the SCR. When more than one template is used for modeling, 
the relative contribution or the weight of each structure is determined by its local 
degree of sequence identity with the target sequence. 

• Loop modeling: If the template protein has a similar loop then it can be copied. 
The database approach of loop modeling involves searching the database for a 
segment of the main chain that fits the two stem region of a loop. The segment 
may be from homologous or non-homologues protein. These are sorted according 
to geometric criteria or sequence similarity and then superimposed and annealed 
on the stem region. Refinement is then carried out by energy optimization. The 
de-novo method is based on searching for a conformation in a given environment. 

• Side chain modeling: Accurate prediction of the side chain conformation is an 
important step as the side chains mostly determine the interactions of the proteins 
with their ligands. One way of side chain modeling is to look for closely related 
sequences having similar conformation. If the side chains are very different, then 
we use the most common conformation found in that particular secondary 
structure and evaluate its energy. Although the conformation of one amino acid 
depends on the position of its neighbors, side chains in proteins tend to cluster 
independently into groups. SCWRL is an algorithm that solves the conformation 
of each cluster by braking up the cluster into groups connected by single amino 
acid. It is based on graph theory. SCWRL3.0 combines the dead–end algorithm 
and branch bound algorithm to give a powerful method for side chain prediction. 

• Energy refinement: Energy minimization does not normally lead to big changes 
unless the structure was very bad to start with it. Energy minimization will bring 
the conformation to the nearest local minimum. But there are many local minima. 
To overcome this problem, molecular dynamics or Monte Carlo method is 
applied.  

• Model evaluation: Usually if the sequence similarity between the target and the 
template is the model obtained will be good. There are two types of evaluation- 
the internal evaluation check whether or not a model satisfies the restraints used 



to calculate it. It involves assessment of the bond angles, bond lengths, dihedral 
angles etc. Some of the programs that evaluates are PROCHECK, WHATCHECK 
etc. The external evaluation checks whether the template chosen is the best one, 
by comparing the Z scores. It is best to select a template that has a high sequence 
similarity, is in similar environment, and has a high X ray/NMR accuracy. 

Some of the most commonly used servers for homology modeling are the Swiss-model, 
Modeler, 3D Jigsaw, 3DPSSM,SAMT-99,fugue-cam etc.  

Fold Recognition or Threading 
Threading or remote homologue design is a protein structure prediction technique carried 
when there is not enough sequence similarity between the target and template. The 
recognition of the template is a problem by itself and hence it is also called “fold 
recognition”. Threading involves steps similar to comparative modeling. It differs in the 
fold identification and fold fitting step. There are many approaches but the main theme is 
to try to find “folds’ from a library of folds of known protein structures. Fold recognition 
is carried based on Chothia’s 1000 fold hypothesis which states that there only a finite 
number of new folds. Instead of predicting how the sequence folds, it predicts how well a 
fold will fit the sequence and hence also called inverse folding. 
 
The structural properties which are used to evaluate the fit include the local secondary 
structure, the environment and the pair-wise interaction of side chain of close amino 
acids. The 3D profile method involves the alignment of the sequence to a string of 
descriptors that describe the 3D environment of the target structure namely whether it is 
polar or nonpolar, whether it is in an alpha helix, beta sheet or a turn and whether it is 
fully buried, exposed or partially buried. Most of the threading programs use the contact 
potential method which models interaction in a protein structure as a sum over pair wise 
interactions. Here each known fold is represented as a 2D matrix of interresidue distance. 
An energy potential describes these distance dependent pair wise interactions of all 
combinations of amino acids. These are then compared with the 2D distance matrix of 
known protein structures and adjusted .The trained contact potentials are then used to 
align an unknown protein sequence against a group of folds. The top scoring alignments 
are considered as possible templates. 
 
There is only 70% chance that the top 10 predictions will contain the correct fold. To 
increase the accuracy and eliminate the decoy folds we must consider more information 
structural or functional information, motifs, domain etc. Structures modeled thorough 
fold recognition has about 3-6Ao RMSD from the actual structure.  
 
Some of programs that predict through fold recognition are Threader, 123D, 3DPSSM, 
PROSPECT etc. Threader, threads the protein through a library of folds derived from 
CATH. It aligns by optimizing the interaction partners fro each pair of residues in contact 
with the structure. It can use secondary structure predictions to constrain the threading. 
123D uses contact potentials. 3DPSSM is uses position specific scoring matrix to align 
the target with the template.3DPSSm is a hybrid method that combines optimization of 
alignment to a family with optimization of threading energy. 



AB-initio prediction 
Ab-initio prediction is carried out when there is no suitable homologue found in the 
database. Prediction is done completely from the sequence It is based on Anfinsen’s 
hypothesis that the native state of the protein represents the global free energy minimum. 
Ab-initio method tries to find these global minima of the protein. Finding the correct 
native like protein conformation requires 

• An efficient search method for exploring the conformational space to find the 
energy minima. 

• An accurate potential function that calculates the free energy of a given structure  
 To simply the computation, models are used to reduce the search space. There are 3 
kinds of model.1) Lattice model: This represents peptide chain as lattices. But fails to 
represent subtle geometric consideration like strand twist and its backbone prediction is 
not all that accurate. 2)Discrete state off-lattice model: It improves upon the lattice model 
by applying restraints like allowing only certain side chain structure and limiting the 
peptide bond rotation.3)Using local structure prediction: In order to reduce the 
complexity, local structure biases are used. But the strength and multiplicity of the local 
structure prediction is highly sequence dependent. There are two type of scoring 
functions namely knowledge based scoring function and force field based function which 
are used. Currently there does not exist a reliable scoring function or search method.  
 
Some of the methods that did well in CASP4 and CASP5 were the segment insertion 
Monte-Carlo method in Rosetta, threading and Monte Carlo method by Friesner, the 
lattice Monte Carlo method by Jeff Skolnick and Andrew Kolinski where side chains 
were used for the lattice model etc.  
 
There is a new  fully automated ab-intio prediction method in which the Monte Carlo 
fragment insertion method (ROSETTA) of Baker and others has been merged with the I-
site ( library of sequences structure motifs) and the HMMSTR model for local structure 
in proteins. Here the input sequence after filtering out the low complexity region is 
submitted to Psi-Blast and then converted to sequence profiles. The sequence profile is 
compared in a sliding window with each of the I- site library scoring matrices. The 
highest confidence fragments retuned are the “I –site predictions”. For the server1, I-sites 
fragment list is converted to Rosetta move set. The move set is fragment libraries of 
length 3 to 9 peptides which are used for Monte Carlo insertion. For server 2, the profile 
was submitted to each of the HMMSTR models namely HMMSTR-r for prediction of 
backbone angles, HMMSTR-d for the prediction of secondary structure and lastly 
HMMSTR-c for the prediction of super secondary structure. Rosetta searches the 
conformational protein space using fragment insertion moves and by applying the Monte-
Carlo acceptance criteria. The point where the fragment is inserted is selected at random 
and then a fragment of length 3 or 9 residues is selected at random from the move set. 
The backbone angles are changed to that of the fragment and the co-ordiantes are then 
calculated. The move is accepted or rejected based on Monte Carlo criteria. The energy 
function is a structure based Bayesian conditional probability drawn form same PDB 
select database.  
 



Case Study:  
To illustrate the prediction of protein structure, I have chosen the entry P20847 from 
Swiss –prot and will try to predict its structure 
Step 1: I searched the database for possible homologues using Psi-Blast. The results of 
scores of the first 18 hits are given below,  

 
Step 2:  To predict the secondary structure of the query protein, I submitted the protein to 
the PHD server. The results returned by the server is summarized as follows, 

• ScanProsite  has identified the following functional motifs that are annotated in 
the Prosite database 

 

 

 

 

 

 

 
• SEG has identified the low complexity regions to be around residues 10-21 and 

from residue 413 to 451 ( which has a PDPVPDT repeat ) 
• Multiple sequence alignment was done by MaxHom 
• CYSPRED has not predicted the protein to be having disulphide bridges 
• GLOBE has predicted the protein to appear as compact as a globular protein 
• Ambivalent sequence predictor has identified the location of conformational 

switches at  between residues 9-19, 23-26, 30-32, 49-57,101-103,276-280.This 
does not predict whether the sequence has any switch or not. 

• PHDsec has predicted the protein to be composed of 21.21 % alpha helix, 17.55% 
beta sheets and the rest 61.24 to be loops. PHDacc has predicted the 51.37 % to 
be buried and 48.63% to be exposed with more than 16% of their surface. 

• Secondary structure is predicted by PHDsec by a system of neural networks. 
From the data given below, it is seen that the protein has both alpha helices and 
beta sheets. 



 
 

 
• TMHMM: prediction of the trans-membrane segments was done by submitting 

the protein to the TMHMM server. From the results obtained, it is seen that there 
is one TMhelix between residues 13 and 35. Since the expected number of amino 
acids in trans-membrane helices in the first 60 amino acids of the protein is 
around 21.34 the  predicted trans-membrane helix in the N-term could be a signal 
peptide 

 
 
Step 3: Model Building: The sequence identity for the first few hits obtained form Psi-
Blast was an average value below 40%. Hence I submitted the sequence to Swiss-model 
for comparative modeling. Although it found 1edg.pdb, 1exg.pdb and 1exh.pdb as 
templates, ProMoII failed to build a suitable model. Hence I submitted the protein to the 
fold recognition server 3DPSSM. 
 
A Pseudo multiple sequence alignment is generated through Psi-Blast. Psipred is used to 
predict the secondary structural elements. It is seen from the pattern of distribution of the 
alpha helices and beta sheets that it must be an alpha and beta class protein. The 
secondary structure predicted by Psi-pred and PHD are similar in the alpha helical 



regions between 39-45,82-90,115-130,160-175,210-231,295-312,329-347,385-395. The 
beta regions that are similar in both the predictions are between 95-100,134-140,180-
185,238-242,267-272,316-322,352-355,453-461,467-476,485-490,495-501,510-515,527-
534. Both have shown the query protein to be composed of many loop regions. The query 
sequence, its profile and the secondary structure predictions are scanned against a fold 
library and the top 20 hits are retrieved. From the hits obtained, it was seen that the 
template 1edg had a higher sequence identity of 42% over a length of 380 compared to 
the other templates. Hence this was chosen for further model building. The model 
generated by 3DPSSM is simple mappings from the co-ordinates of the template structure 
and the query residues aligned to them. Side chains are modeled using SCWRL.  
 
3DPSSM has identified the query protein to be belonging to the class of alpha and beta 
proteins having a TIM beta/alpha barrel fold and in the super family of glycosy 
ltransferases and family of beta glycanases. It has identified the protein to be an endo-
glucanase celA protein. The 3D model obtained using 1edg as the template is shown 
below. It is seen that the model does have many insertions and deletions. But most of 
these are in the coil regions except for a single residue insertion in the helical region and 
a 2 residue deletion in the helical region. 
 

 
 
Step 4: Model evaluation and comparison: The model obtained was evaluated using 
PROVE, PROCHECK and whatif checks. There are a number of unusual bond angle and 
bond length reported although the there is a normal bond angle and bond length 
variability. There are number of buried unsatisfied hydrogen bond donors and acceptors 
as checked by bpocheck. Gly 17 has an unusual back bone oxygen position and prolines 
at 48, 60 and 372 have improper dihedral angles. Proline at 171 has an unusual 
puckering. A stretch of three residues from Tyr 360 to asn 362 have an abnormal packing 
environment. This may be because these residues are far apart in the loop or might be an 
indication of misthreading. As seen from the Ramachandran plot there are residues in the 
forbidden regions. The Ramchandran Z-score expressing how well the backbone 
conformations of all residues are corresponding to the known allowed areas in the 
Ramachandran plot is within expected ranges. Omega angles are too tightly restrained. 
 
 



 
 
The structure of the query P20847 is shown in left and that of the template 1edg is shown 
in right and the superposition of the query (in green) on the template (cyan) is shown 
below them.  
 

   
 

 
The query having 547 is an alpha and beta class endoglucanase cel A protein with a TIM 
beta/alpha barrel fold. It belongs to the family of glycosyl transferase. Glycosyl 
hydrolases (EC 3.2.1-) are a widespread group of enzymes that hydrolyse the glycosidic 
bond between two or more carbohydrates or between a carbohydrate and a non 
carbohydrate moiety. Glycoside hydrolase family 5 contains enzymes with several known 
activities- endoglucanase ,beta mannose, exo 1,3 glucanase, endo 1,6 glucanase, 
Xylanase and endoglycoceramidase.  The template protein is an endoglucanase.  By 
similarity with the template the catalytic site must be at the C terminal ends of the beta 
strands.   
 



Conclusion 
Predicting the structure of a protein is a difficult task. Different approaches to predict the 
structure take into account different chemical and physical properties. This has given rise 
to a number of tools and techniques, some of which being specialized to work on either 
some aspects of predictions or some categories of proteins. Nevertheless these are not 
significantly accurate or reliable enough to predict all kinds of proteins. One way that the 
quality of the model can be improved is by jointly applying different prediction technique 
and combines their results. But this has to be done delicately as different techniques have 
different ways or formats of representing their input and output. As each one uses a 
different approach, comparison and interpretation of the result can be hard. Sometimes 
integration may not always give the best results. But generally, good detection of 
homologues sequence and a good multiple sequence alignment can improve the results. 
The high quality crystal structure on which the model is built also plays a part in giving 
good models. Metaservers when used can also give good models. 
 
Method Sequence 

identity 
Template 
coverage 

Accuracy Difficulty 

Homology >30% >90% 1-3Ao Trivial 
Fold 
recognition/homology 

20-30% >75% 2-5Ao Easy 

Fold recognition <20% >50% 3-10Ao Moderate 
Ab-initio <5 0 5-20Ao Hard 
High and medium accuracy model is helpful in refining of functional predictions that 
have been based on a sequence match alone. This is because the binding of a ligand to a 
substrate is determined by the structure of the binding site. Ab-initio prediction methods 
even with their very low accuracy can give a reliable functional annotation. 
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