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INTRODUCTION 
 

The sequence-structure gap: 
 

The explosive accumulation of protein sequences in the wake of large-scale genome sequencing 
projects is in stark contrast to the much slower experimental determination of protein structures.  Despite 
significant improvements of structure determination methods, the gap between knowledge of protein 
structure and protein sequence is rapidly increasing.  Thus, to acquire a full understanding of the 
biological role of these proteins, knowledge of their structure and function is essential.  Computational 
structure prediction methods have sought to meet the challenge of bridging the sequence-structure gap in 
providing valuable information for the large fraction of sequences whose structures have not yet, or may 
not ever, be determined experimentally.   
 
The basis for secondary structure prediction: 
 

A long-term goal of the protein-folding problem is to be able to predict the folded three-
dimensional structure of a protein from its amino acid sequence alone.  Secondary structure prediction is 
often regarded as the initial starting point in predicting the three-dimensional structure of a protein.  
Fundamentally, it attempts to classify amino acids in protein sequence according to their predicted local 
structure, which can be subdivided into three states:  a-helix, b-sheets, or loops.  While the number of 
states may vary depending on the algorithm employed, we will simplify our analysis to a three-state 
problem, Q3, where turns, coils, or other helices will collectively be called “loops”. 
 
Principle Assumptions: 
 

The fundamental assumption on which all secondary structure prediction methods are based is 
that there should be a correlation between amino acid sequence and secondary structure.  Because the 
entire information for forming secondary structure is contained in the primary sequence, any short 
stretch of amino acid sequence will preferentially adopt one kind of secondary structure over another.  
Thus, many algorithms examine a sequence window of 13-17 residues, assuming that the central amino 
acid in the window will adopt a conformation that is determined by the side groups of all the amino 
acids in the window.  For α-helices, this window is typically 5-40 residues long, and for β-sheets, this 
window ranges from 5-10 residues in length.  While earlier algorithms assumed that each amino acid 
within the sequence window was unaffected by other neighboring amino acids, later methods recognized 
the oversimplification, and accounted for the possibility that more distant interactions within the primary 
amino acid chain may influence local secondary structure.   
 
Secondary structure prediction algorithms: 
 
The three most widely used methods of protein secondary structure prediction include:  
 

• Chou-Fasman and GOR methods 
• neural network models 
• nearest-neighbor methods



N a m e            P (H)    P (E )   P (turn)     f(i)    f ( i+1)   f ( i+2)   f ( i+3)

A lanine        142 83 66 0.06 0.076 0.035 0.058

A rginine        98 93 95 0.07 0.106 0.099 0.085

Aspartic Acid  101 54 146 0.147 0.11 0.179 0.081

Asparagine      67 89 156 0.161 0.083 0.191 0.091

Cysteine        70 119 119 0.149 0.05 0.117 0.128

G lutamic Acid  151 37 74 0.056 0.06 0.077 0.064

G lutamine      111 110 98 0.074 0.098 0.037 0.098

G lycine         57 75 156 0.102 0.085 0.19 0.152

Histidine      100 87 95 0.14 0.047 0.093 0.054

Isoleucine     108 160 47 0.043 0.034 0.013 0.056

Leucine        121 130 59 0.061 0.025 0.036 0.07

Lysine         114 74 101 0.055 0.115 0.072 0.095

Methionine     145 105 60 0.068 0.082 0.014 0.055

P henylalanine  113 138 60 0.059 0.041 0.065 0.065

P roline         57 55 152 0.102 0.301 0.034 0.068

Serine          77 75 143 0.12 0.139 0.125 0.106

Threonine       83 119 96 0.086 0.108 0.065 0.079

Tryptophan    108 137 96 0.077 0.013 0.064 0.167

Ty rosine        69 147 114 0.082 0.065 0.114 0.125

V aline         106 170 50 0.062 0.048 0.028 0.053

Table 1:  Chou-Fasman statistics for the secondary 
structure preferences of amino acids 

 
In which: 

• k designates the given state (helix, sheet, loop).  
• P(k/i) is the frequency of observation of the state k for amino acid i.  
• P(k) is the frequencies of observing state k.  
• P(k,i) is the parameter of amino acid i for state k. 

 

Chou-Fasman and GOR methods: 
 
In 1974, Chou and Fasman developed a statistical method 
based on the propensities of amino acids to adopt secondary 
structures based on the observation of their location in 15 
protein structures determined by X-ray diffraction. These 
statistics derive from the particular stereochemical and 
physicochemical properties of the amino acids and are shown 
in Table 1.  Over the years, these statistics have been refined 
using a larger set of proteins. 
 
Unlike Chou-Fasman which assumes that each amino acid 
individually influences secondary structure within a window 
of sequence, GOR (Garnier, Osguthorpe, and Robson) takes 
into account the influence on secondary structure of the 
amino acids flanking the central amino acid residue.  In the 
most recent version of GOR (GOR IV), certain pairwise 
combinations of amino acids in the flanking region or of a 
flanking amino acid and the central residue can influence the 
conformation of the central amino acid.  For instance, if a 
particular amino acid is surrounded with residues that prefer 
to be in a helix, it is likely to be in a helix, even if its 
individual helical preference is low.  Thus, instead of 
considering propensities for a single residue, position-
dependent propensities for helix, sheet and turn has been 
calculated for all residue types.  It is based on the same Pij 
values as in the second Chou Fasman method. 
 
Programs:  DPM, DSC, GOR IV 
 
 
 



Neural network models 
 
A neural network is comprised of a machine learning approach, providing computational processes the 
ability to “learn” in an attempt to simulate the complex patterns of synaptic connections formed among 
neurons in the brain during learning.  Computers are trained to recognize patterns in known secondary 
structures using training sets of non-homologous structures, and tested with proteins of known structure.  
An example of one commonly used neural network, PHD, is illustrated below in Figure 1. 
 
Neural networks have been able to achieve a level of 73% overall three-state per-residue accuracy.  The 
reasons for improved prediction accuracy is attributed to its ability to align the query sequence with other 
related proteins of the same family and find protein members with known structures to aid its assignment 
of secondary structures.  While neural networks can detect interactions between amino acids within a 
window of amino acids, neural networks have great difficulties in dealing with variable length motifs 
because the input layer is typically a rigid structure with a fixed number of cells, accepting sequences of 
only one length class.  Furthermore, neural nets are designed as black-box methods.  While the weights of 
a weight matrix are usually known to the user and lend themselves to a physical interpretation, the 
parameters of a neural net are hidden and not meant to be biologically interpretable or of interest to the 
user.  Thus, while neural nets may be very powerful function prediction tools, they usually do not tell us 
anything about the underlying molecular recognition process. 
 
Programs:  PHD, PSIPRED, NNPREDICT 

 
 
Nearest-neighbor methods 

The basic idea of the nearest-neighbor approach is the prediction of the secondary structure state of the 
central residue of a test segment, based on secondary structure of homologous segments from proteins 
with known three-dimensional structure.  It is performed by finding some number of the closest sequences 
(from a database of proteins with known structure) to a subsequence defined by a window around the 
amino acid of interest. Using the known secondary structures of the aligned sequences (generally 
weighted by their similarity to the target sequence) a secondary structure prediction is made.  For 
instance, a large list of short sequence fragments is made by sliding a window of defined sequence length 
along a set of ~400 training sequences of known structure that are non-homologous to each other, and 
recording the secondary structure of the central amino acid of each window.  Subsequently, a window of 
the same size is then selected from the query sequence and compared to the list of short sequence 
fragments to identify the 50 best matches.  The frequency that the central amino acid in each of the 50 
matching fragments will form a particular secondary structure is then used to predict the secondary 
structure of the central amino acid in the query sequence.  The variability in nearest neighbor methods 
arises from the selection of subsequences closest to a window around the amino acid whose structure is 
being predicted.  Each program uses a different set of parameters, like how similarity is defined, or what 
sequence window size should be examined. 

Programs:  SOPM, SOPMA, NNSSP, PREDATOR



Figure 1:  Schematic of PHD algorithm.  PHD starts from a multiple sequence alignment and then uses three 
layers of networks to predict the secondary structure of the central residue.  Step 1:  Homology information is obtained using 
a Blast search of all related proteins.  Step 2:  A multiple sequence alignment is generated from the homologous proteins 
using MaxHom.  The frequencies of different amino acids (and gaps) in each position and some other information is used for 
the prediction. Step 3:  The occurrence of various residues in a sequence window of 13 amino acids is correlated with the 
secondary structure of the central residue.  Step 4:  In the structure-to-structure layer, the output from the first layer in a 
window of 17 residues is used to predict the secondary structure of the central residue.  In this case, the network will be 
trained not to predict unreasonably short segments of secondary structure.   Step 5:  Several networks (3-12 depending on 
PHD version) are combined into a jury prediction network. This improves the prediction accuracy with about 2%.  Step 6:
A simple filtering method that, for instance, changes HHEHH to HHHHH is applied.  No significant change in performance 
is obtained.  

Figure 1: Schematic of the PHD algorithm 
 



SPECIFIC AIMS 
 
In this paper, I have used a fully crystallized protein from each class of proteins: all α-helix, all β-sheet, 
alpha/beta, and engineered alpha+beta protein to evaluate the strengths and weaknesses of nine different 
secondary structure prediction algorithms.  In doing so, I also hoped to address the following questions:  
 

• Are there differences in the ability of secondary structure prediction algorithms to detect alpha-
helices vs. beta-strands?  If so, what differences?  And why? 

• Are the algorithms capable of predicting the secondary structure of an engineered protein? 
• Are tertiary interactions critical for accurate secondary structure prediction?  If so, how? 
• What affect does helical capping have on secondary structure prediction? 
• Are buried helices predicted at lower accuracy than exposed helices? 
• Is the use of multiple sequence alignments in secondary structure prediction a great advantage? 
• Does prediction accuracy increase by combining the results from multiple programs into a 

consensus sequence? 
 

METHODS 
 
To aid us in the evaluation of the strengths and weaknesses of each secondary structure algorithm, I have 
provided a detailed description of the basic principles behind each of the programs used in this paper.   
 
ALGORITHM DESCRIPTION 

DSSP 
 

Dictionary of protein secondary structure.  Pattern recognition of hydrogen-bonded and geometrical 
features.  Defines secondary structure, geometrical features and solvent exposure based on the atomic 
co-ordinates from PDB files, but does not predict structures.  It bases assignments on hydrogen 
bonding patterns and backbone dihedral angles. 

 NEURAL NETWORK ALGORITHMS 

 
 
PHD 
 

Jury decision neural networks.  Neural networks of multiple sequence alignment.   PHD was the 
first program to use evolutionary information derived from aligned homologous sequences.  It is based 
on a two-layered feed-forward neural network. In the neural network, aligned homologous sequences 
of known structures are used to "train" the network, which then can be used to predict the secondary 
structure of the aligned sequences of the unknown protein.  See Figure 1 for details.  The method also 
applies balanced training, percentage amino acid composition and conservation, sequence length, and 
insertions and deletions to enhance prediction accuracy 

PSIPRED 
(Secondary 
structure 
prediction 
based on 
Position 
Specific 
Iterated-Blast) 

Divergent profile (PSI-Blast) based neural network prediction. PSIPRED is a simple and reliable 
secondary structure prediction method, incorporating two feed-forward neural networks that perform 
an analysis on output obtained from PSI-BLAST (Position Specific Iterated–BLAST). PSI-BLAST 
refers to a feature of BLAST in which a profile (or position specific scoring matrix, PSSM) is 
constructed from a multiple alignment of the highest scoring hits in an initial BLAST search. Highly 
conserved positions receive high scores and weakly conserved positions receive scores near zero. The 
profile is used to perform a second (etc.) BLAST search and the results of each "iteration" used to 
refine the profile. This iterative searching strategy results in increased sensitivity. PSIPRED is capable 
of achieving an average Q3 score of nearly 78%.  The results are returned as a graphical jpeg 
representation of the secondary structure prediction. 

 
nnPREDICT 
 

Neural network method.  The nnPREDICT algorithm uses a two-layer, feed-forward neural network 
to assign the predicted type for each residue.  In making the predictions, the server uses a FASTA 
format file with the sequence in either one-letter or three-letter code, as well as the folding class of the 
protein.  Residues are classified as being within an α-helix, β-strand, or neither.  For the best-case 
prediction, the accuracy rate of nnpredict has been reported as being over 65%. 



 Chou-Fasman/GOR algorithms 

 
 
GOR IV 
 

Secondary structure prediction using information theory. Consideration of 
residue pairs.  The GOR method uses information theory to formulate the influence 
of local sequence upon the conformation of a given residue.  However, the existing 
database does not allow the evaluation of parameters required for an exact treatment 
of the problem.  GOR IV considers all possible pair frequencies within a window of 
17 amino acid residues, improving GOR I to a mean accuracy of 64.4% for a three 
state prediction (Q3).  The predicted secondary structure is the one of highest 
probability compatible with a predicted helix segment of at least four residues and a 
predicted extended segment of at least two residues.  

DPM 
(Double 
Prediction 
Method) 

Chou-Fasman and class prediction.  DPM consists of a first prediction of the 
secondary structure from a new algorithm that uses parameters of the type described 
by Chou-Fasman (Table 1), and the prediction of the class of the proteins (α, β, α/β, 
α+β) from their amino acid composition.  These two independent predictions allow 
one to optimize the parameters calculated over the secondary structure database to 
provide the final prediction of secondary structure.  It can be summarized as 4 
successive steps:  (1) Prediction of the structural class of a protein from amino acid 
composition according to Nakashima et al., 1986. The parameters used for the 
prediction of the class have been determined onto a set of 135 proteins with known 
structures. They are just amino acid percentages calculated on isolated classes of α, 
β, α/β, and α+β proteins. (2) Preliminary secondary structure estimation from a 
simple algorithm, (3) Comparison between the 2 independent predictions, (4) 
Optimization of parameters and re-prediction of secondary structure. 

 
DSC 
(Discrimination 
of Protein 
Secondary 
Structure 
Class) 

GOR and linear discrimination of multiple sequence alignment.   DSC applies 
GOR residue attributes, with the addition of hydrophobicity and amino acid 
position, which are combined with information from the multiple sequence 
alignment. The important concepts in secondary structure prediction are identified 
as: residue conformational propensities, sequence edge effects, moments of 
hydrophobicity, position of insertions and deletions in aligned homologous 
sequence, moments of conservation, auto-correlation, residue ratios, secondary 
structure feedback effects, and filtering. Optimal weights are deduced by linear 
discrimination, with filtering applied to remove erroneous predictions. This method 
has an advantage in that the prediction method is both implicit and effective. 



 Nearest-neighbor Algorithms 

SOPM 
(Self-
Optimized 
Method for 
protein 
secondary 
structure 
prediction) 
     & 
SOPMA 

Nearest-neighbor method.  A new method called the self-optimized prediction method (SOPM) 
seeks to improve the success rate in the prediction of the secondary structure of proteins in the 
following way.  The first step of the SOPM is to build subdatabases of protein sequences and their 
known secondary structures drawn from a ‘DATABASE.DSSP’ of 239 proteins by (i) making binary 
comparisons of all protein sequences and (ii) taking into account the prediction of structural classes 
of proteins. The second step is to submit each protein of the subdatabase to a secondary structure 
prediction using a predictive algorithm based on sequence similarity.  The third step is to iteratively 
determine the predictive parameters that optimize the prediction quality on the whole sub-database. 
The last step is to apply the final parameters to the query sequence. This new method correctly 
predicts 69% of amino acids for a three-state description of the secondary structure in the whole 
database (46,011 amino acids).  Improvements on SOPM were brought about by predicting all the 
sequences of a set of aligned proteins belonging to the same family.  This improved SOPM method 
(SOPMA) correctly predicts 69.5% of amino acids for a three-state description of the secondary 
structure in a whole database containing 126 chains of non-homologous (less than 25% identity) 
proteins.   

 
 
PREDATOR 
 

Hydrogen-bonding propensities and nearest neighbor classifier.  PREDATOR incorporates non-
local interactions in protein secondary structure prediction from the amino acid sequence.  It is based 
on recognition of potentially hydrogen-bonded residues in the amino acid sequence.  PREDATOR 
uses database-derived statistics on residue-type occurrences in different classes of local hydrogen-
bonded structures in such a way that it can differentiate the hydrogen-bonding interactions between 
adjacent â-strands, parallel vs. anti-parallel â-strands, and amino acids (i, i+4) on á-helices.  Seven 
different secondary structure propensities are generated for the query sequence, with a nearest 
neighbor implementation applied to calculate propensities for á-helix, â-strand and loop.  The novel 
feature of PREDATOR is its reliance on local pair-wise alignment of the sequence to be predicted 
between each related sequence.  The algorithm has a prediction accuracy of 68% in three structural 
stages, relies only on a single protein sequence as input and has the potential to be improved by 5-7% 
if homologous aligned sequences are also considered.  

 
NNSSP 
(Nearest-
neighbor 
secondary 
structure 
prediction) 

Scored nearest neighbor method.  The NNSSP method combines nearest-neighbor algorithms and 
multiple sequence alignments.  It improves upon the local structural environment scoring scheme 
developed by Bowie et al., which assigns ever residue of a protein with known three-dimensional 
structure to an “environment class” based on the local structural features of the residue position, such 
as solvent accessibility, polarity, and secondary structure.  In addition to incorporating the Bowie 
scheme, NNSSP takes into consideration N- and C-terminal positions of α-helices and β-strands and 
also β-turns as distinctive types of secondary structure. Another improvement, which also 
significantly decreases the time of computation, is performed by restricting a database with a smaller 
subset of proteins that are similar with a query sequence. Using multiple sequence alignments rather 
than single sequences and a simple jury decision method we achieved an over all three-state accuracy 
of 72.2%, which is better than that observed for the most accurate multilayered neural network 
approach, tested on the same data set of 126 non-homologous protein chains.  The size of the 
database used for scanning is also altered to reflect similarity to the query sequence, reducing 
computation time, and improving the final accuracy.    

 



Figure 2:  Swiss PDB ribbon diagram of Sirt2 crystal 
structure.  Helices (red), sheets (yellow), structure 
prediction non-consensus regions (blue).  

RESULTS AND DISCUSSION 
 

Case Study 1: alpha/beta proteins 
Sirt2 histone deacetylase (Homo sapiens) 

 
The deacetylation of histones is an important 

phenomenon in eukaryotic gene regulation that 
results in tighter chromatin structure and 
transcriptional repression.  Saccharomyces 
cerevisiae Sir2, the defining member of a novel 
family of NAD+-dependent histone deacetylases, 
called sirtuins (Sir2-like proteins), functions in the 
establishment of silenced chromatin at the mating-
type, rDNA, and telomeric loci, and participates in 
cell cycle regulation, double-stranded break repair, 
meiotic checkpoint control, and aging.  Uniquely, 
Sir2 has been found to play a role in lengthening the 
life span of yeast due to caloric restriction.  The 
sirtuin family is evolutionarily conserved across 
numerous prokaryotic and eukaryotic organisms, 
such as Salmonella typhimerium, Caenorhabditis 
elegans, Drosophila melanogaster, and Homo 
sapiens, suggesting that their mechanisms of action 
may be similar.  To date, the most extensively 
studied sirtuin is the yeast Sir2 protein itself, while 
the physiological functions and molecular 
interactions associated with other classes of sirtuins 
are still largely unknown.   

Recently, the 1.7 Å crystal structure of the 323 amino acid catalytic core of human Sirt2, a homolog of 
yeast Sir2, was obtained (Finnin et al., 2001).  Sirt2 has a 304-amino acid catalytic core and a 19-residue N-
terminal helical extension.  It is comprised of two domains:  a larger domain (residues 53-89, 146-186, 241-356) 
that is an inverted variant of the classical Rossmann fold, and a smaller domain (residues 90-145 and 187-240) 
that contains the zinc binding domain.  Sirt2 falls under the SCOP classification of an alpha/beta protein with 
mainly parallel β−sheets and β-α-β units.  More specifically, Sirt2 is comprised of a deoxyhypusine synthase 
(DHS)-like NAD/FAD-binding domain with parallel β-sheets of six strands in the order 321456 and six α-
helices packed against the β−sheet.  Furthermore, as part of the Sir2 family of transcriptional regulators, it 
contains an insertion of a rubredoxin-like zinc finger domain. 

 
Table 2:  Pairwise Comparison of Secondary Structure Prediction Algorithms for Sirt2 

 DPM DSC GOR4 PHD Predator SOPM SOPMA Consensus DSSP 
DPM 100% 75% 71% 62% 77% 74% 74% 81% 66% 
DSC 75% 100% 69% 71% 74% 78% 75% 83% 66% 

GOR4 71% 69% 100% 57% 72% 78% 72% 79% 65% 
PHD 62% 71% 57% 100% 62% 69% 68% 72% 67% 

Predator 77% 74% 72% 62% 100% 73% 71% 82% 67% 
SOPM 74% 78% 78% 69% 73% 100% 84% 89% 76% 

SOPMA 74% 75% 72% 68% 71% 84% 100% 84% 71% 
Consensus 81% 83% 79% 72% 82% 89% 84% 100% 73% 

DSSP 66% 66% 65% 67% 67% 76% 71% 73% 100% 



Figure 3:  Sirt2 crystal structure, 
residues 100-115 (pink).  DPM, PHD, SOPM, 
and nnPREDICT are the only methods sensitive enough 
to correctly predict that the region suspended outside on 
the surface of the protein between residues 100-115 are 
alpha-helical.  On the other hand, Chou-Fasman 
predicts the residues form a beta-strand, and the other 
programs, GOR4, Predator, PSIPRED, NNSSP predict 
that it is just a loop.  Note that it is possible that the 
“loop” region may also include another kind of alpha-
helical structure that is not defined using the three-state 
per-residue prediction assumptions we have made.  
Thus, for our purposes we will ignore the fact that it is 
not entirely correct to say that GOR4, Predator, 
PSIPRED, and NNSSP were inaccurate in predicting a 
loop—in fact, they may have realized a more subtle 
distinction in secondary structure that doesn’t exactly fit 
the oversimplified categories we have defined. 

Figure 4:  Sirt2, residues 115-127 (blue).  All the algorithms contradict 
each other regarding the alpha/loop/alpha structure of the residues between 115-127.  
The confusion is understandable, as the alpha helices are short and the loop regions are 
twisted into a structure that is ambiguous, and can be easily mistaken to be a beta-
strand.  PHD and Predator predict a beta-strand that spans the first alpha helical region, 
while SOPM predicts a beta-strand in the middle of a helical region.  While DSC over 
predicts the length of the alpha helical region, GOR4 under predicts it.  Only PSIPRED 
and NNSSP are the closest to being correct.  PSIPRED correctly returns a short alpha-
helix between 115-118, followed by a loop, and then the alpha helical region 122-126.  
Similarly, NNSSP predicts an alpha helical region that spans the mini-loop.  Generally, 
NNSSP is better at predicting alpha-helical regions because it takes into consideration 
N- and C-terminal positions of alpha-helices as distinct types of secondary structure.  
Moreover, it filters out short helical regions rigorously to increase its accuracy by 
converting any mixed alpha/beta regions shorter than 3-4 amino acids completely to 
alpha helices.  By increasing its sensitivity towards detecting alpha helices, NNSSP also 
sacrifices the ability to predict shorter alpha helical fragments, as in this case.  It is 
surprising that Predator failed to recognize the alpha-helicity of this region.  The most 
reasonable explanation is that the database from which Predator derives its statistical 
information on residue-type occurrences in different classes of hydrogen-bonded 
structures was inadequate to encompass the type of hydrogen-bonding interaction 
described by theis amino acid region.   

 
The most successful algorithms for predicting the secondary structures of the alpha/beta protein, Sirt2, were PSIPRED (79%) and SOPM (76%), 
while the worst algorithms were Chou-Fasman (39%) and GOR I (48%).  PSIPRED’s incorporation of evolutionary information through conserved 
regions in multiple sequence alignments performed by PSI-BLAST probably helped achieve the extraordinary level of structure prediction over the 

other algorithms.  In this specific case, Sirt2 
belongs to a highly conserved, and well-
defined family of Sir2 histone deacetylases, 
enabling the PSI-BLAST sequence alignment 
to be particularly effective.  In contrast, Chou-
Fasman’s assumption that each amino acid 
operates independently in affecting secondary 
structure is clearly insufficient for accurate 
secondary structure prediction.  Even GOR’s 
attempt to take into account the influence on 
secondary structure of the amino acids 
flanking the central amino acid residue may 
not suffice.     



Figure 5: Sirt2, Residues 181-185 and 191-
195 (blue).  Another region that seemed to have caused 
some confusion were the two beta-strands between 
residues 182-185 and 191-195.  The two strands seem to 
be twisted in such a way that may make it easy to 
mistaken them for helical or loop regions.  While PHD 
and SOPM both predict helical regions, Predator predicts 
a loop region.  Indeed, a region may have a higher 
preference for forming a helix than a strand, but 
interactions non-local in the sequence may result in that 
the formation of a ββ-sheet is energetically more favorable. 
Indeed, the confusion between helices and strands can 
often be attributed to hydrogen bonds stabilized by non-
local inter-residue contacts. 
 

 
Figure 7:  Sirt2 zinc binding 
domain with 4 cysteine residues. 
 
The pair of beta-strand/loop motifs forming 
the highly conserved zinc-finger binding 
region does not cause any problems in the 
secondary structure prediction programs, 
most likely because it is such a well-defined, 
and highly conserved region in the protein.   

 
Figure 6:  Sirt2, residues 295-304 (blue).  
Surprisingly, none of the algorithms are capable of 
predicting that the region enclosed by residues 295-
304 is alpha-helical.  PSIPRED, SOPMA, NNSSP, 
and nnPREDICT predict that it is a beta-strand, while 
PHD and Predator predict that it forms a loop.  
Apparent from the crystal structure, the helical region 
is suspended in mid-air between two loops.  While it is 
possible to imagine that the algorithms were simply 
confused by the loop regions flanking the alpha-helical 
segment, it would also be interesting to see if this 
region is initially unstructured, but once it is solvent 
exposed, it transforms into an alpha helix due to 
hydrophobic interactions.  For instance, a peptide 
region in the SH3 domain forms into an alpha helix 
upon exposure to solvent.  Thus, a protein’s secondary 
structure may very well be governed by interactions 
beyond just tertiary interactions within itself.   

 



Case Study 2: all alpha proteins 
TAFII18 (Homo sapiens) 

 
In eukaryotic transcription initiation, RNA polymerase II assembles into a macromolecular complex 

comprised of the general transcription factors TFII(A-H) at the basal promoter, which binds to the TATA 
element with the help of the TATA-binding protein (TBP).  Associated with TBP are TAFs, or TBP-associated 
factors, which play several important roles in transcriptional regulation (reviewed in Goodrich et al., 1996), 
including promoter recognition, transcriptional activation, and acting as specific coactivators.  In human TFIID, 
cDNAs encoding eleven TAFIIs have been characterized, and exhibit remarkable evolutionary conservation.  
Human TAFII18 is a novel TAF shown to exhibit homology to the N-terminal region of the well-characterized 
yeast TAFII, SPT3, which interacts with TBP and is required for transcription from a subset of yeast promoters 
and is part of the large SAGA complex containing ADA coactivators and the Gcn5 histone acetyltransferase.   

Recently, the 2.6 Å resolution crystal structure of the human TBP-associated factor 
(hTAFII)28/hTAFII18 heterodimer was solved, showing that these TAFIIs form a novel histone-like pair in the 
TFIID complex.  The histone folds in hTAFII18 were not predicted from its primary sequence, indicating that it 
defines a novel family of atypical histone fold sequences, unlike core histones and other known histone fold-
containing proteins.  The TAFII18 histone fold motifs are also present in the N- and C-terminal regions of the 
SPT3 proteins, suggesting that the histone fold is a more commonly used motif for mediating TAF–TAF 
interactions than previously believed. 

Under the SCOP classification, human TAFII18 is composed entirely of α-helices that form a non-
canonical histone fold motif seen in Spt3-like transcription factors.  It consists of three helices, and one long 
middle helix flanked at each end with shorter helices.  The hTAFII18 fragment (residues 31–75) resembles a 
histone fold motif lacking the C-terminal 3 helix. A ten residue N-terminal 1 helix is linked to a 25-residue 2 
helix by an 8-residue L1. A unique charged residue, K34, is exposed at the surface of the 1 helix, while the 
hydrophilic face of the 2 helix is mainly acidic (E52, D55, E58, D59, E63, and E67). 
 
Table 3:  Pairwise Comparison of Secondary Structure Prediction Algorithms for TAFII-18 

 DPM DSC GOR4 PHD Predator SOPM SOPMA Sec.Cons. DSSP 
DPM 100% 68% 66% 66% 75% 72% 74% 74% 80% 
DSC 68% 100% 89% 87% 84% 82% 81% 90% 76% 

GOR4 66% 89% 100% 82% 87% 81% 78% 86% 73% 
PHD 66% 87% 82% 100% 79% 78% 76% 83% 74% 

Predator 75% 84% 87% 79% 100% 85% 85% 93% 81% 
SOPM 72% 82% 81% 78% 85% 100% 97% 88% 81% 

SOPMA 74% 81% 78% 76% 85% 97% 100% 88% 84% 
Sec.Cons. 74% 90% 86% 83% 93% 88% 88% 100% 79% 

DSSP 80% 76% 73% 74% 81% 81% 84% 79% 100% 
 

Generally, the algorithms are better at predicting alpha helices and proteins dominated by alpha-helical 
regions.  SOPMA returned an extraordinary success rate of 85% in the secondary structure prediction of TAFII-
18.  Moreover, the consensus sequence was, on average, better than using only one algorithm alone as the 
predictive method.  Surprisingly, the neural network algorithm, PHD, did very poorly in the predictions of an 
entirely alpha-helical protein (see Figure 8), in fact, predicting more beta-strand regions than any of the other 
algorithms.  Both DPM and SOPM/A may have increased success because of the use of structural class 
prediction—in this case, TAFII-18 easily falls into the all-alpha structural class of proteins.  Falling cleanly into 
one of these categories allows both algorithms to properly optimize their predictive parameters for the most 
accurate prediction. Fortunately, this protein did not form any coiled-coils, which could not have been predicted 
using the algorithms here.       
 



Figure 9:  Swiss PDB ribbon diagram of TAFII8-18, secondary structure colored in succession.   
(A) Regions of confusion among secondary prediction algorithms (magenta)  (B) PHD inaccurately predicted regions of 
secondary structure (magenta). 

A B 

Surprisingly, however, despite being an entirely alpha-helical protein, two regions were confused as being beta-strands. 

           
 
 
 
 
 
 
 
 
 

The first region constitutes residues 38-41, which were predicted by DSC, GOR4, PHD, SOPM/A, and the consensus sequence 
as being beta sheets.  According to the crystal structure, this region is a short alpha helix flanked by two disordered loops at the 
beginning of the protein.   

 
The second region, a segment of the long alpha helical region between residues 107-145, seemed to have caused some 

problems among the various algorithms.  The segments spanning residues 107-118 and 121-126, were predicted to be beta sheets by 
virtually all the algorithms, except DPM, which was able to predict the entire helical region correctly.  SOPMA was the next algorithm 
closest to being correct, having missed a short stretch of 112-118 residues of the helix but correctly predicting the remainder of the 
helical region.  It is interesting to note that both regions that caused problems were confined to the C-terminal beginning and N-terminal 
end of TAFII-18.  These regions may be floppier since they are pointed away from the more ordered and structured internal region of 
the protein and exposed entirely to solvent. 



Figure 10: Swiss-PDB ribbon diagram of the 
A and B domains of murine class II ADH.  
Helix (red), strands (yellow), non-consensus strands 
and helices (green), non-consensus loops (blue). 

Case Study 3: all beta proteins 
Alcohol dehydrogenase, Class II (Mus musculus) 

 
Alcohol dehydrogenase (ADH) is a 

dimeric zinc-metalloenzyme that catalyzes 
the reversible oxidation of alcohols to a 
cetaldehyde/ketones with the concomitant  
reduction of NAD.  The functional roles of 
the ADH classes are not fully established, 
but catalytic activities suggest roles in the 
metabolism of steroids, retinoids, biogenic 
amines, lipid peroxidation products, 
hydroxy fatty acids as well as xenobiotic 
alcohols and aldehydes.  Moreover, zinc-
containing ADH’s  are found in bacteria, 
mammals, plants, and fungi .   The murine 
class II ADH defines a functionally 
distinct group of class II alcohol 
dehydrogenases that exhibits interesting 
catalytic properties, such as low catalytic 
efficiency as a consequence of slow 
hydride transfer and the fact that it is not 
possible saturate it with ethanol, while 
beta-hydroxy fatty acids function as tight 
inhibitors rather than as substrates.  

Moreover, it has been shown to catalyze the reduction of some benzoquinones and benzoquinoneimines.  Only 
three classes of murine ADH’s (I, III, IV) have previously been identified, and the extreme evolutionary 
divergence of class II ADH’s have made this group a challenge to characterize.  The human form was the first 
class II ADH to be identified and shown to prefer unsaturated hydrophobic aldehydes in noradrenaline 
metabolism (Ditlow et al., 1984).   

According to the SCOP classification system, the murine class II ADH contains a GroES-like fold with 
a partly opened beta-barrel, a classical alpha/beta Rossmann-fold C-terminal domain, and a zinc-finger 
subdomain comprising residues 94-117.  Recently, the 2.2 A resolution crystal structure of murine class II 
alcohol dehydrogenase was determined in a binary complex with the coenzyme NADH.  The ADH2 dimer is 
asymmetric in the crystal with different orientations of the catalytic domains relative to the coenzyme-binding 
domains in the two subunits, resulting in a slightly different closure of the active-site cleft.  The semi-open 
conformation and structural differences around the active-site cleft contribute to a substantially different 
substrate-binding pocket architecture as compared to other classes of alcohol dehydrogenase, and provide the 
structural basis for recognition and selectivity of alcohols and quinones.  The loop with residues 296-301 from 
the coenzyme-binding domain is short, thus opening up the pocket towards the coenzyme. On the opposite side, 
the loop with residues 114-121 stretches out over the inter-domain cleft.  A cavity is formed below this loop and 
adds an appendix to the substrate-binding pocket.  Asp301 is positioned at the entrance of the pocket and may 
control the binding of omega-hydroxy fatty acids, which act as inhibitors rather than substrates.  

 
 
 
 
 
 
 
 



Figure 11: ADH, residues 
60-66. 
The loop region between 
residues 60-66 was predicted 
by all the algorithms to form a 
beta-strand structure.  The 
same mistake happens again 
around residue 80-84, but this 
time, only a minority of the 
algorithms (DSC, PHD, and 
SOPM/A) interprets the region 
to be a beta-strand. 
 

 
Table 4:  Pairwise Comparison of Secondary Structure Prediction Algorithms for ADH 
 
  DPM DSC GOR4 PHD Predator SOPM SOPMA Sec.Cons. DSSP 
DPM 100% 62% 70% 57% 67% 67% 59% 72% 52% 
DSC 62% 100% 71% 77% 63% 67% 80% 77% 62% 
GOR4 70% 71% 100% 65% 74% 73% 68% 82% 58% 
PHD 57% 77% 65% 100% 62% 67% 81% 77% 73% 
Predator 67% 63% 74% 62% 100% 67% 63% 75% 61% 
SOPM 67% 67% 73% 67% 67% 100% 76% 81% 61% 
SOPMA 59% 80% 68% 81% 63% 76% 100% 79% 68% 
Sec.Cons. 72% 77% 82% 77% 75% 81% 79% 100% 68% 
DSSP 52% 62% 58% 73% 61% 61% 68% 68% 100% 
 
 

The accuracy of the algorithms declined in their attempt to predict the structure of the predominantly 
beta-sheet protein, murine class II ADH.  In this case, the consensus sequence (68%) rivals the success rate of 
the PHD algorithm (73%) in being the most accurate in predicting the secondary structure of ADH, which has 
typically not been the case in other situations.  In contrast to the success of predicting the secondary structure 
of TAFII-18, the algorithms are generally not as keen in detecting beta-strands. 
 

The first beta sheet appears between residues 9-15, but DPM, SOPM, and SOPMA are mildly confused 
in thinking that there is an alpha helix wedged between two beta strands. DSC and GOR IV are accurate, but 
their predictions are a bit longer than the observed beta strand.  PHD and Predator predict that the beta strand is 
followed immediately by an alpha helix.  Interestingly, the consensus prediction decides to interpret the muddle 
as a loop.   
 
 
 
 
 
 
 



Figure 12: ADH, residues 153-164. 
 
The two short beta-strands, separated by a 
loop, comprising residues 153-164, caused 
the algorithms to predict the presence of 
helices, especially GOR 4.  Only DSC, 
PHD, and SOPMA are exempt in that they 
are able to predict the second short beta 
strand.  The other programs believe the beta 
strand is followed immediately by an alpha 
helix.   

Figure 13: ADH, residues 173-178. 
Reminiscent of the residues between 49-53 and 101-
104, the short helical fragment between residues 173-
178 is predicted to be a beta-sheet by almost every 
algorithm, except Predator.  Predator correctly 
predicts a short alpha helical region followed by a 
loop.  The crystal structure identifies the helical 
fragment as being buried deep inside the protein, 
following a beta strand/loop, and preceding another 
cluster of alpha helices.  The hydrogen bonding 
interactions must predominate to generate the alpha-
helicity of the residues in this area. 
 

Figure 14: ADH, residues 187-192. 
 
The termination of an alpha helix around 
residues 187-192 causes a muddled list of 
predictions, ranging from BLLB, to all BBBB, 
to ABBA, and no consensus among any of the 
algorithms.  Only PHD predicts the correct 
secondary structure.  The confusion may be a 
consequence of N-capping, as the last two 
residues, the asparagine and threonine, are 
often predicted to form N-caps in alpha helical 
regions. 
 



Figure 15: ADH, residues 308-312. 
Another completely helical region that 
immediately follows a beta strand is interpreted 
to be a beta strand by all the secondary 
structure prediction algorithms.  In this case, 
the crystal structure reveals why this is the case.  
Usually a loop separates strands and helices, 
but in this case, the two structures almost seem 
to melt into each other—the border between 
being a helix or a strand is so nebulous that it is 
very easy to see how the programs can be 
confused between the two structures. 



SEQUENCES 
 
GB1:          23        33 
TTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTEK 
 
Chameleon αα:          23        33 
TTYKLILNGKTLKGETTTEAVDAWTVEKAFKTFANDNGVDGEWTYDDATKTFTVTEK 
 

Chameleon ββ:              42        52 
TTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGAWTVEKAFKTFTVTEK 

 

Figure 10: Rasmol ribbon 
diagram of GB1.  Helix (pink) 

and sheets (yellow). 

Case Study 4: an engineered alpha+beta protein 
Chameleon (IgG-binding protein1, Streptococcus) 

 
The “chameleon” sequence is an artificially engineered 11-

amino acid sequence that folds as an á-helix (chameleon-á) when in 
one position but as a â-sheet (chameleon-â) when in another 
position of the primary sequence of the Immunoglobulin G-binding 
domain of protein G (GB1).  GB1 is comprised primarily of 
antiparallel â-sheets with segregated á-helix and â-sheet regions.  
The 11-amino acid sequence corresponding to AWTVEKAFKTF 
was designed to replace the á-helix residues 23-33 and â-sheet 
residues 42-52 of GB1 in such a way that would still preserve the 
hydrophobic nature of the residues that constitute the interface 
between each of the secondary structure elements and the core of 
the protein GB1.  Peter Kim identified three types of environments 
in comparing residues 23-33 and 42-52 of GB1:   
 

• Class I, sites where a residue was buried in one 
secondary structure but exposed to the other 

• Class II, sites where a residue occupied a buried position in both positions but was very different 
in size or polarity in each structure 

• Class III, sites that had no conflict in size, polarity, or burial  
 

By itself, the chameleon sequence is unfolded, having no strong preference for either the á-helix or â-
sheet conformation, as determined by both circular dichroism and NMR.  Yet, when embedded in different local 
environments, the chameleon sequence adopts one secondary structure preferentially over the other.  Thus, the 
secondary structure formed by the chameleon sequence is specified by tertiary, non-local interactions, and 
underscore the importance of environment-dependent effects in protein folding. 
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Table 5:  Pairwise Comparison of Secondary Structure Prediction Algorithms  
for GB1, Chameleon-alpha, and Chameleon-beta 

 
 
 
 
 

 
 

Overall, Predator was the most successful (82%) algorithm in correctly predicting the secondary structure 
governing the 57 amino acid long GB1 sequence.  PHD came in second with a success rate of 73%.  The 
consensus sequence was hardly any better than any of the individual algorithms alone.  Interestingly, the same 
trend held throughout the predictions for both chameleon sequences, although the accuracy of Predator 
dropped dramatically to 73% in the attempt to predict the secondary structure of chameleon-beta.  DPM 
generally faired very poorly in predicting the secondary structure of any of the proteins.  Possibly class 
prediction was difficult due to the short length of the query sequence and the protein being unique to the 135 
proteins which define the structure classes.  Else, the Chou-Fasman is inadequate in describing the non-local 
interactions that often govern secondary structures. 
 
 

 

 DPM DSC GOR4 PHD Predator SOPM SOPMA Sec.Cons. 
GB1 54% 64% 64% 73% 82% 64% 64% 63% 

Chm-αα 53% 69% 66% 74% 81% 62% 66% 64% 
Chm-ββ 54% 66% 57% 70% 73% 55% 61% 61% 



Figure 12:  Secondary Structure Prediction alignment of GB1  
against DSSP 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Confusion between alpha/beta/loop: 
Predator predicted the correct beta strand between residues 14-20, but the other programs, namely DPM, 
GOR4, SOPM/A, predicted overlapping loop and helical regions spanning the beta-strand.  DSC and PHD 
predicted some beta-sheet   
• Unable to predict N-terminal cap of the alpha helix: 
With the exception of PREDATOR, all the other algorithms had difficulty predicting the last four amino 
acids of the alpha helix included in residues 33-36, consisting of two amino acids typically found in N-
capping structures: asparagine and aspartic acid.  Rather, they terminated prematurely with a prediction for 
loops because they were unable to detect that the Ncap. 
• DPM has problems detecting secondary structure: 
For the region between 23-33, all the algorithms were consistently able to predict the alpha-helical nature of 
this region with the natural amino acid sequence in place.  Similarly, the beta-strand/turn/beta-strand region 
was predicted by virtually all the algorithms with the exception of DPM, which missed the beta strand 
region between residues 40-46, and also mistook the loop/turn region for an alpha-helical structure.   

 
Figure 13:  Secondary Structure Prediction alignment of Chm-alpha 
against GB1-DSSP 
                    10        20        30        40        50   
                     |         |         |         |         |   
Chm-alpha   TTYKLILNGKTLKGETTTEAVDAWTVEKAFKTFANDNGVDGEWTYDDATKTFTVTEK 

DPM         LLBBBBBLLLLLLLLLLBAAAAABBBAAAAAAAALLLLLLLALLLLLALABBBBBLL 

DSC         LLBBBBBLLLLLLLLBBBBBAAAAAAAAAAAALLLLLLLLBBBBBLLLLLBBBBBLL 

GOR4        LLBBBBBLLLLLLLLLAAAAAAAAAAAAAAAAALLLLLLLLBBBBLLLLLBBBBBBL 

PHD         LBBBBBBLLLBLLBBBBBAAAAAAAAAAAAAAAALLLLLLLBBBBBLLLLBBBBBBL 

Predator    LBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAALAAALLLLLBBBBBLLLLBBBBBLL 

SOPM        BBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAABLLLLLLLLBBBBBLLLLBBBBBBL 

SOPMA       LBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBBLLLLBBBBBBL 

Consensus   LLBBBBBLLLLLLLLLLLAAAAAAAAAAAAAAALLLLLLLLBBBBLLLLLBBBBBLL 

DSSP-GB1    LLBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAAAAAALLLLLBBBBBLLLLBBBBBL             
 

The conversion of the sequence from AATAEKVFKQYà AWTVEKAFKTF (chm sequence) using 
site-directed mutagenesis should preserve the alpha helical structure of this region.  Nuclear overhauser (NOE) 
spectra and nuclear magnetic resonance (NMR) have confirmed this experimentally.  Surprisingly, all the 
algorithms, with the exception of DPM, were capable of predicting the correct secondary structure for this 
altered region.  In fact, the overall accuracy in alignments slightly improved for each algorithm.  In contrast, 
DPM predicted a muddled string of predictions, confusing alpha helices with beta-strands.  

                  10        20        30        40        50   
                   |         |         |         |         |   
GB1       TTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTEK 

DPM       LLBBBBBLLLLLLLLLLLAAAAAAAAAABAAAALLLLLLLLLLLLLLALABBBBBLL 

DSC       LLBBBBBLLLLLLLLBBBBAAAAAAAAAAAABBLLLLLLLBBBBBLLLLLBBBBBLL 

GOR4      LLBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBLLLLLBBBBBBL 

PHD       LBBBBBBLLLBLLBBBBBAAAAAAAAAAAAAAAALLLLLLLBBBBBLLLLBBBBBBL 

Predator  LBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAAAAAALLLLLBBBBBLLLLBBBBBLL 

SOPM      BBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBBLLLLBBBBBBL 

SOPMA     LBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBBLLLLBBBBBBL 

Consensus LLBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBLLLLLBBBBBLL 

DSSP-GB1  LLBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAAAAAALLLLLBBBBBLLLLBBBBBL            



 
Figure 14:  Secondary Structure Prediction alignment of Chm-alpha 
against GB1-DSSP 
                  10        20        30        40        50   
                   |         |         |         |         |   
Chm-beta  TTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGAWTVEKAFKTFTVTEK 

DPM       LLBBBBBLLLLLLLLLLLAAAAAAAAAABAAAALLLLLLLLABABAAAAABBBBBLL 

DSC       LLBBBBBLLLLLLLLLBBBAAAAAAAAAAAAALLLLLLLLLBBBBLLLLLBBBBBLL 

GOR4      LLBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLAAAAAAALLBBBBBBL 

PHD       LBBBBBBLLLLLLBBBLLAAAAAAAAAAAAAAAALLLLLLLLBBLLLLLLBBBBBBL 

Predator  LBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAAAAAALLLLLLLAAAAAALBBBBBLL 

SOPM      BBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBAAAAAABBBBLL 

SOPMA     LBBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLBBBBBLLLABBBBBLL 

Consensus LLBBBBBLLLLLLLLLLAAAAAAAAAAAAAAAALLLLLLLLLBBBAAAALBBBBBLL 

DSSP-GB1  LLBBBBBBBLLLLBBBBBBBLLLAAAAAAAAAAAAAALLLLLBBBBBLLLLBBBBBL               

 
Transposing the chameleon sequence to residues 42-52 preserves the beta-strand/turn/beta-strand nature 

of this region, but causes substantial confusion among the various secondary structure prediction algorithms.  
DPM, GOR4, and Predator incorrectly predict the chameleon sequence to be predominantly alpha helical, 
suggesting that they are unable to factor in the amino acid environment surrounding the chameleon sequence 
into its prediction calculations.  It is possible that the non-local interactions important for this structural 
prediction are not governed by hydrogen-bonding, since Predator, an algorithm that is based on the recognition 
of hydrogen-bonding propensities, was unable to offer the correct prediction.   SOPM is also incorrect in 
predicting a beta/alpha/beta region.  Only DSC and PHD, which both incorporate multiple sequence alignment 
data, are capable of correctly predicting the beta-strand/loop/beta-strand motif.  SOPMA is close to being 
correct, but confuses one of the loop forming residues to be an alpha-helical residue.  In this situation, the 
consensus sequence obtained from averaging all the programs is complete nonsense: LBBBAAAALBB.    



CONCLUSIONS 
 
Are there differences in the ability of secondary structure prediction algorithms to detect alpha-helices 
vs. beta-strands?  If so, what differences?  And why? 
 

As evidenced from the results of the four case studies, it is apparent that secondary structure prediction-
based modeling is riddled with errors in attempting to predict helices and strands.  Oftentimes, the confusion 
seems to arise due to the sole use of local information in regions stabilized by long-range, non-local 
interactions.  Upon comparing the ability of the algorithms to predict the secondary structure of an all alpha-
helical protein (TAFII-18) with one that was predominantly beta-sheet (ADH), we can see that beta-strands are 
generally predicted much more poorly than helix or coil residues.  More distant interactions may account for the 
observation that beta strands are predicted more poorly by analysis of local regions.  Another source of 
confusion may result in a situation where a region may have a higher preference for forming a helix than a 
strand (and vice versa), but interactions non-local in sequence may result in that the formation of a β-sheet (α-
helix) is energetically more favorable. Indeed, the confusion between helices and strands can often be attributed 
to hydrogen bonds stabilized by non-local inter-residue contacts. 

More specifically, a major shortcoming of the PHD neural network algorithm is that it often predicts 
helices that are too long and misses short, fragmented helices in the process.  Predator and NNSSP have also 
exhibited this behavior.  PHD has, however, been able to improve its accuracy through evolutionary information 
from multiple sequence alignments and using a multilevel system for secondary structure prediction.  On the 
other hand, neighest neighbor algorithms like NNSSP has a slightly better overall accuracy than PHD and better 
predicts α-helices, while PHD more accurately predicts beta-sheets.  The larger average segment length of 
helices predicted by NNSSP is a result of rigorous exclusion of the predicted helices with lengths below 5 
through filtering methods.  Class prediction programs, such as DPM, fair poorly in distinguishing alpha helices 
from beta sheets when the protein cannot be easily sorted into one of the four secondary structure classes.  Also, 
it is much easier to predict structure class starting from the detailed information about evolutionary profiles for 
the entire sequence than by restricting the input to just merely amino acid composition of the protein. 
 

Are the algorithms capable of predicting the secondary structure of an engineered protein? 

Since all of the secondary structure prediction algorithms are trained on naturally evolved proteins, it 
would be interesting to see if these algorithms can be applied to engineered sequences.  In the native sequence 
of the IgG binding domain of protein G (GB1), the deca-peptide AATAEKVFKQY (chameleon alpha: residues 
23-33) is embedded in an alpha-helix, whereas the deca-peptide EWTYDDATKTF (chameleon beta: residues 
42-52) forms a beta-strand.  When replacing both naturally occurring deca-peptides by the engineered deca-
peptide AWTVEKAFKTF, the natural structures are maintained in such a way that the deca-peptide 
AWTVEKAFKTF switches from helical to strand conformation.   

Remarkably, DSC and PHD, two algorithms which both incorporate information from multiple sequence 
alignments, were capable of predicting the correct structure for the engineered peptide.  In general, such 
prediction methods may not be valid if applied to engineered proteins. Interestingly, for the particular case of 
chameleon, both DSC and PHD was successful. When basing the prediction on a multiple alignment (rather 
than on single sequences) the peptide AWTVEKAFKTF was correctly predicted in both conformations.  
 

Are tertiary interactions critical for accurate secondary structure prediction?  If so, how? 
 

Firstly, there is experimental evidence suggesting that non-local interactions within the primary amino 
acid chain may influence local secondary structure.  For instance, tertiary interactions such as hydrogen bonding 
play a dominant role in determining whether an amino acid will form â-sheets (Kim et al., 1994).  Moreover, it 
has been shown that the same amino acid sequence up to five (Kabsch et al., 1983) and eight (Sudarsanam, 
1998) residues in length can be found in different secondary structures in the proteins in the structural database.   



Secondly, as demonstrated by the frequent confusion of alpha helices and beta sheets, and the fact that 
the chameleon sequence generally stumped most of the secondary structure prediction algorithms, it is clear that 
tertiary interactions are important, although not absolutely necessary, for accurate predictions of secondary 
structure.  For instance, because Predator takes into account hydrogen-bonding propensities of amino acids, it is 
much better equipped to identify differences between alpha helices, parallel or anti-parallel beta sheets, and 
loop structures.  Its success in predicting the secondary structure of TAFII-18 can be attributed to that ability. 

 
What affect does helical capping have on secondary structure prediction? 

C4-C3-C2-C1-Ccap-C’-C’’…….N’’-N’-Ncap-N1-N2-N3-N4…. 

On average, we can deduce from the case studies that virtually all the secondary structure prediction 
programs predict the core of helices and strands more accurately than the caps, in particular the N- and C- 
terminal residues in α-helices.  The helical capping problem arises because the first and last turns of α-helices 
contain residues that cannot form one of the backbone hydrogen bonds that hold the helix together.  This 
problem is often addressed by the formation of “capping” hydrogen bonds from residues in the adjacent loops at 
both the C-terminus and N-terminus of an a-helix.  In C-terminal capping, the backbone amide of the C’’ 
residue forms a capping hydrogen bond to the backbone carbonyl of the C3 residue, and the amide of C’ forms 
a second hydrogen bond with the carbonyl of C2.  In addition, there is a hydrophobic interaction between the 
sidechain of C’’ and that of C3, C2, or C4.  Hydrophobic residues are required at C’’ and at C3, C2 or C4, and a 
lysine or arginine residue is allowable at C’’ because of the substantial hydrophobic character of their alkyl 
chains.  “N-capping” occurs when the side chain and backbone amides of the Ncap and N3 residues make 
reciprocal hydrogen bonds.  Residues that can participate in this motif are threonine, serine, asparagine, aspartic 
acid, glutamine, and glutamic acid.  They help increase the stability of both proteins and helical peptides.  Both 
of these motifs allow sharp turns in the direction of the peptide chain and are thought to prevent “fraying” of the 
helix ends.   

 
Are buried helices predicted at lower accuracy than exposed helices? 

 
None of the four case studies point to any differences in the ability of secondary structure prediction 

programs to predict the structures of buried or exposed helices.  It has been argued in literature that buried 
helices would generally be predicted less accurately than exposed helices.  Upon looking at the success rates 
among the various algorithms, we can conclude that the per-residue accuracy actually appears to be higher for 
buried residues than for residues in exposed, solvent-accessible helices.  In fact, for TAFII-18, the exposed 
helices resulted in much greater confusion among the algorithms than the other buried helices. 

 
Is the use of multiple sequence alignments in secondary structure prediction a great advantage? 

 
Prediction from a multiple alignment of protein sequences rather than a single sequence has long been 

recognized as a way to improve prediction accuracy.  Prediction methods that use multiple sequence alignments 
gain accuracy over single-sequence methods by exploiting the patterns of residue conservation that are seen in 
protein families.  During evolution, residues with similar chemical properties are conserved if they are 
important to the fold or function of the protein. This makes patterns of hydrophobic residues characteristic of 
particular secondary structures easier to identify.  Inclusion of more distantly related sequences in the alignment 
should improve the clarity of such patterns, but in an automated alignment building procedure, the risk is that 
unrelated protein sequences will pollute the alignment. 

Generally, the more sequences in the alignment, the better.  However, it is also important to realize that 
bias may arise from having highly redundant or identical sequences present in the alignment.  Instead, you 
should leave out some family members in the high homology (>70%) region, in particular, when there are not 
many rather diverged sequences present. 

Aligned sequences should have considerable variation with respect to the guide sequence. Ideally, it 
should contain sequences at least at a level of 30% pairwise sequence identity (with respect to the predicted 



protein). In general, more diverged sequences contribute more to the information content than do very similar 
ones (> 80%).  More distantly related sequences contribute more to the alignment diversity which is the base for 
an improved prediction accuracy. However, the more distant relative are difficult to align, causing alignment 
errors, which may adversely affect secondary structure prediction. 
 

Does prediction accuracy increase by combining the results from multiple programs into a consensus 
sequence? 

 
When predicting the secondary structure of a protein “blind”, without knowledge of the answer, it is 

useful to exploit the features of all available prediction algorithms rather than rely on one. 

Averaging over many methods helps, on average, but it is possible to loose accuracy as well.  For 
instance, generally the consensus sequence was not significantly better than most of the individual algorithms.  
If one of the programs consistently faired badly, such as Chou-Fasman, that would drag the average down, even 
though the other algorithms may be very successful and correct.  Most often some methods are more accurate 
than the average, such as neural network algorithms.  Furthermore, there are examples of proteins predicted 
poorly by all methods, such as predominantly beta-sheet proteins, for which all methods agree by mistake. 
Thus, trying to use many methods may not provide the answer to the question whether the prediction for your 
protein is more likely to be below or above average.  

Moreover, combining programs may help improve on non-systematic errors.  Any prediction method 
has two sources of errors: (1) systematic errors, such as through non-local effects, and (2) white noise errors 
caused by, for instance, the succession of the examples during training neural networks. Theoretically, 
combining any number of methods improves accuracy as long as the errors of the individual methods are 
mutually independent and are not only systematic  
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