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I. Introduction  
 Proteins are linear chains of amino acids that evolved the property of folding into 
unique three-dimensional structures in order to perform complex biological functions. 
Determining their structures has far-reaching implications in science and medicine. For 
example, once the structure of a protein is known, its function can be more readily 
elucidated. Additionally, appreciating how proteins fold can also facilitate drug design. 
While experimental determination of protein structure through X-ray crystallography and 
NMR spectroscopy remain the most accurate methods, these techniques are resource and 
time consuming. And with the advent of high-throughput sequencing, the ratio of known 
experimental structures to the number of all sequenced proteins is shrinking and now is 
less than 1 in 1000 (6). Thus, the need for computational methods for protein structure 
determination has never been greater.   
 Protein folding was first modeled by standard molecular dynamics (MD), which 
simulates physical movements of atoms by numerically solving the Newton’s equations 
of motion for a system of interacting particles. Molecular mechanics force fields define 
the forces between particles and potential energy. MD is limited, however, by 
computational power. A nanosecond MD simulation of a 100-residue protein requires 
approximately 400 hours on a single processor. Additionally, the field has yet to settle on 
the most tractable and physically realistic model for water, nor is there a consensus on the 
values of parameters used in molecular mechanics potentials (1). The failings of this 
approach led to the development of lower complexity models.  
 Recent experimental data indicate that, when excised, local sequences of a peptide 
fold independent of the full protein (14). This suggests that perhaps in folding, local 
sequences have a propensity to form a limited number of structures, which influences the 
overall protein architecture. This “local bias” is one answer to the question of how to 
limit the conformational space searched in modeling algorithms. Rosetta, created in the 
Baker lab, implements this technique by coarsely sampling local structures for short 
segments of a polypeptide first. These fragments are then assembled randomly using a 
Monte Carlo simulated annealing search. Finally, the energy of the assembled models is 
minimized using a scoring function that accounts for nonlocal interactions such as 
compactness, hydrophobic burial, and specific pair interactions (disulfides and 
electrostatics). The figure below illustrates the conceptual basis for Rosetta; near native 
structures are labeled N.  
  

 



Figure 1. Conceptual Basis for Rosetta (1).  
 
Since its birth, Rosetta has been identified by the community-wide critical assessment of 
structure prediction (CASP) experiments as one of the most successful current methods 
for de novo protein structure prediction (2). The purpose of this article is to review the 
Rosetta algorithm and its performance in CASP (particularly in CASP9) experiments. 
More importantly, we will address one major flaw in Rosetta that seems to have hindered 
progress in the field by examining how dynamic programming and a RNA structure 
determination method proposed by the Das lab offers a potential solution to this problem.  
 
II. Methods 
 
Fragment Library  
Rosetta uses the Bayes statistical theorem to derive a structure from short fragments:  
 

 
 

To calculate the full structure from the probabilities in the theorem, a fragment library 
must first be built by parsing input sequences into overlapping segments that are 3 and 9 
residues long. These lengths were chosen because there is a greater correlation between 
local sequence and local structure for 3 and 9 residue fragments compared to other 
fragment lengths (<15 amino acids) (3). 200 of the most likely angles for these fragments 
are computed from X-ray resolved structures. Then the fragments are matched to ones in 
the protein data bank (PDB) via a PSIBLAST search. The last step of constructing the 
fragment library is to rank the matches by minimal steric overlap, favorable torsion 
angles and compatibility with secondary structure predictions made by Psipred, SAM-
T99 and JUFO software.  
 
Fragment Insertion and Assembly 
Fragment assembly occurs by a Monte Carlo procedure, which begins with an arbitrary 
position in the protein in a fully extended conformation. A 3 or 9-residue fragment 
insertion window is randomly selected and a fragment from the top 25 matches in the 
ranked list for this position is inserted. For each insertion, the torsion angles in the protein 
segment are replaced with ones from the selected fragment. The resulting conformation’s 
energy is calculated using scoring functions.  
 
Two scoring functions are available. One is more coarse-grained but faster to compute 
whereas the second function is all-atomic and more accurate but also slower. The coarse-
grained function takes into account the torsion angles of the backbone with the side 
chains described by a centroid located at the center of mass. In contrast, the all-atomic 
description considers all side-chain atoms, van der waals packing, hydrogen bonds and 
manifestations of water. The complete scoring function can be found in Rohl et. al., 2004 
(2). If a conformational move decreases the energy of the overall structure (compared to 
before the fragment was inserted), the move is retained. Those that increase the energy 
are kept according to the Metropolis-Hasting acceptance probability P=exp(ΔE/kT). This 



requirement is necessary because some moves that increase energy allow the structure to 
escape from local minima in order to reach global minima. Each simulation attempts 
28,000 fragment insertions, and of those, the final prediction is generally the 
conformation with the lowest energy.   
 
Fragment insertion is a global move that generally affects the whole protein structure. 
Although a global move can change the overall structure faster, the acceptance 
probability is small because such rearrangements destroy the already formed local 
contacts, thereby increasing the energy dramatically. Thus, once the initial coarse tertiary 
structure is determined, the fragment insertion strategy must be replaced with more fine-
grained potentials to allow for efficient model refinement. Finer sampling was 
accomplished with additional modification operators based on the following actions: 
random torsion angle perturbation, selection of globally nonperturbing fragments, rapid 
torsion angle optimization to offset global backbone perturbations, optimization of 
scoring function by gradient descent after a backbone modification and rapid 
optimization of side-chain rotamers (2). For example, the “crank” move is a combination 
of making an insertion at a selected window and of varying torsion angles of adjacent 
residues using a “wobble” operation. The two actions offset one another to reduce the 
overall perturbation. The figure below depicts the steps (A-D) involved in a “crank” 
fragment insertion. Initially in figure 1A, the nine-residue fragment insertion (red) causes 
a significant change in the original conformation (black to blue). However, after 
optimization of angles at two wobble sites (colored cyan and orange in 1B and 1C), the 
original and final structures are much more similar (black versus magenta in 1D).  

 
Figure 2. Example of a “crank” fragment insertion (2).  
 
III. Advantages & Past Performance   
 
By building a fragment library, Rosetta makes two assumptions that have made it one of 
the most successful structural determination programs. The first is that local amino acid 
sequence propensities bias each subsequence of a folding polypeptide chain toward a 



limited number of alternative local structures before distant interactions narrow these 
down to one stable native arrangement (3). Secondly, Rosetta assumes that the 
distribution of configurations sampled by a peptide segment are well represented by the 
range of configurations already present in protein databases. Since local biases are 
influenced by subtle interactions including side-chain configurational entropy losses, 
current physical chemistry-based models do not capture all the nuances. Fortunately, 
Rosetta essentially circumvents the complex details of inter-atomic interactions through 
this knowledge-based step.  
 Rosetta has achieved remarkable success in advancing macromolecular modeling. 
Figure 3 shows successful predictions made by Rosetta at CASP 5. The target, T0135 in 
3A has 106 residues and the target, T0171 in 3B has 69 residues. The structures on the 
left are the experimental structures. These models reached a Cα rmsd of approximately 4 
Å.  
 

 
Figure 3. Rosetta-predicted protein structures at CASP 5 (2).  
 
Moreover, in CASP 6, Rosetta successfully modeled all-beta and all-alpha proteins and 
became the first to refine a close-to-atomic level structure (1.59 Å Cα rmsd) from only 
the sequence (5). Most recently in CASP 9, Rosetta again distinguished itself by being 
noted as one of six groups that performed better than the rest (along with HHpredB, 
Zhang-Server, QUARK and Seok-server), especially at the local scale (15). The 
experiments included over 100 protein targets. Shown below are the rankings, which are 
based on three different scores (GDT-HA, GDC-All, and LDDT-All). The global distance 
test (GDT) counts the largest set of amino acid residues’ Cα positions in the prediction 
structure that is within a certain distance from their position in the experimental reference 
structure. GDC-All is a similar measure but takes into account all non-hydrogen atoms. 
LDDT evaluates correct local interactions. As an example, the Rosetta model for a 
lactose-specific IIB component domain of the phosphoenolpyruvate carbohydrate 
phosphotransferase system (PTS) from Streptococcus pneumonia, obtained GDT-HA and 
LDDT-all scores of 71.6 and 89.8, respectively, both of which were 3 to 6 points higher 
than other groups as well as 15 points higher than a pseudo-model generated form the 
best template identified by PSI-BLAST.  



 
Figure 4. Ranking the top 25 groups on common targets in CASP9. The Rosetta 
algorithm is among the six best methods (15). 
 
IV. Challenges and Bottlenecks  
After significant advances in early CASP experiments, progress in the field in recent 
years has been more modest (7). And despite its effectiveness, inherent problems in 
Rosetta algorithm limit its ability to produce high-resolution models of even some small 
protein and RNA structures such as the 20-residue mini-protein Trp cage and a 10-
residue protease-binding loop of the chymotripsin inhibitor from barley seeds (8). 
Inaccurate models may be attributed to flaws in the Rosetta energy function. For 
example, Rosetta’s solvation model ignores nontrivial solvation structure around polar 
groups and “second shell” water effects (7). Additionally, Rosetta’s hydrogen bond 
potential does not consider effects of charged atoms or cooperativity within H-bond 
networks. These issues may be rectified with improvements to the energy function by 
incorporating more physical information and parameters for solvation, H-bonds and 
electrostatic interactions. 
 
But, the major bottleneck in many of these problems is simply that the native structure is 
not sampled. This issue precedes the energy function problem because in this case, the 
native structure’s energy is never even evaluated by scoring functions. Incomplete 
conformational sampling arises from the absence of native torsions in the fragment 
library. In other words, if a 3-nt or 9-nt fragment in the protein is unique and cannot be 
found in the protein database, the native structure containing such a fragment will 
obviously not be sampled by Rosetta. This is a fundamental challenge that faces all 
template-based modeling. In 2011, the Das lab conducted an enumerative stepwise ansatz 
to enable RNA loop modeling to atomic-accuracy (9). This approach can be implemented 
in the Rosetta framework and could be the solution to the conformational sampling 
bottleneck. It employs a recursive step-by-step enumeration of millions of conformations 
for each monomer to cover all build-up paths. But, we will first introduce the dynamic 
programming algorithms that underlie this method.  
 



V. Dynamic Programming  
Dynamic programming algorithms are utilized in many prominent computational biology 
programs including BLAST, FASTA (sequence search databases), CLUSTALW 
(multiple sequence alignments) and HMMER (profile hidden Markov models) (10). Such 
algorithms consist of three major components. We will illustrate these parts in the context 
of pairwise alignment as a simple example. We will be aligning two sequences x and y 
with lengths M and N, respectively.  

1. First, we need to recursively define the optimal score by breaking up the problem 
into smaller independently optimizable pieces. Starting from the end of the 
sequences, the residues xM and yN could be aligned to each other. However, xM 
could also be aligned to a gap (while yN is paired with another base upstream of 
xM), and vice versa for yN. Thus we must be able to calculate the optimal score for 
all three cases because the optimal alignment will correspond to the highest 
scoring case. In the first scenario, the score of the entire alignment, ST, equals 
S(xM,yN) + S(M-1, N-1), which is the sum of the score for aligning xM to yN and 
the score for the optimal alignment of all bases before them. If xM is aligned to a 
gap (second case), ST = S(M-1, N) + g, where g is the gap penalty. Similarly, if yN 
is aligned to a gap, ST = S(M, N-1) +g. To calculate these other scores, we need 
the scores of even simpler problems: S(M-2, N-2), S(M-2, N-1), S(M-1, N-2), 
S(M-2, N), S(M-1, N-1), S(M, N-2). The advantage of a recursive definition of 
the optimal score is that the optimal alignment of x1…xM-1 to y1…yN-1 is 
independent of the score S(xM, yN). By solving tiny alignment subproblems, the 
overall optimal alignment can be determined.  

2. To keep track of each subproblem, a dynamic programming matrix is employed to 
memorize the solutions of optimal subproblems in an organized tabular form. For 
example, in pairwise sequence alignment, the optimal scores S(i, j) for the ith and 
jth residue is recorded in the (i, j) cell of the matrix shown below:  
 

 



Figure 5. Dynamic programming matrix. The cells in the optimum path are 
highlighted in red and the arrows depict “traceback pointers” to mark which of the 
three cases were optimal for reaching each cell (10).  
 
The matrix is filled starting with the easiest and smallest problems such as the 
scores S(0, 0), S(i,0) and S(0, j). Each cell is then filled with the optimal score 
calculated recursively from the three adjacent cells to the upper left, above and to 
the left. These solutions lend themselves to solving progressively bigger problems 
until the matrix is filled, at which point the last score computed S(M, N) is the 
score of the optimal alignment.  

3. Even though the optimal score of the complete sequence alignment is known, we 
still have to recover the actual alignment corresponding to this score through a 
recursive “traceback” of the matrix. Starting in cell (M, N), we move backwards 
to one of the three previous cells whose score was used to calculate the current 
cell’s score. Then, we continue to retrace the steps until we reach cell (0, 0). The 
sum of movements through the matrix yields the optimal alignment.  
 

It is worth noting that dynamic programming remains extremely computationally 
demanding, but it will always guarantee a mathematically optimal solution. Another 
caveat is that only scoring systems than allow the optimal solution to be broken into 
independent parts can be used in dynamic programming.  
 
VI. RNA Loop Modeling Using Enumerative Stepwise Ansatz  
The same principles in dynamic programming of pairwise alignment can be applied to 
folding RNA structures. Like before, we will demonstrate the technique in folding RNA 
through a simplification of the problem by assuming that the native RNA structure can be 
attained simply by maximizing the number of base pairs. Thus, our scoring system is +1 
per base pair and 0 for everything else. The optimal score for the best structure for a 
subsequence from position i to j in a sequence of length N is defined as S(i, j). Next, we 
recognize that S(i, j) can be solved recursively in terms of the optimal scores of smaller 
subsequences just like in pairwise alignment. Eddy et. al. 2004 outlines the different 
possible structures of nested base pairs on i..j (11):  

1. i and j are base-paired together; they are added onto a structure for i+1..j-1 (Fig. 
6.1).  

2. i is unpaired; it is added onto a structure for i+1..j (Fig. 6.2) 
3. j is unpaired; it is added onto a structure for i..j-1 (Fig. 6.3) 
4. i, j are paired, but not to each other; the structure for i..j combines substructures 

for two subsequences: i..k and k+1..j (Fig. 6.4) 
The four possibilities are shown in figure 6. Red dots indicate the new bases that are 
added onto previously calculated optimal substructures.  
 
 



 
Figure 6. Four possible structures for a subsequence i, j (11).  
 
For case 1, the score that we add for the base pair i, j does not affect the optimal structure 
for i+1..j-1. In fact, the optimal structure on i+1..j-1 and its score s(i+1, j-1) are 
independent of anything else that is built on top of it. Thus for the first scenario, S(i, j) = 
S(i+1, j-1) +1 since i and j can base pair. The same recursive methods apply for the other 
cases. In case 2, S(i,j) = S(i+1, j) + 0 since i is unpaired. Likewise, in case 3, S(i,j) = S(i, 
j-1) + 0 because j is unpaired. Finally, in case 4, S(i, j) = S(i, k) + S(k+1, j) since S(i, k) 
and S(k+1, j) are separate sub-structures and i and j are paired but not to each other. After 
determining the scores for all four possibilities, the greatest of the four corresponds to the 
optimal score S(i, j). As we did before, these scores can be tabulated in a triangular 
matrix starting from subsequences of length 0 or 1, which have no base pairs [S(i, i) = 
S(i, i-1) =0], and proceeding step by step from there. To recover the optimal structure, we 
conduct the traceback method again.  
 
Of course, the scoring function used here is not sufficient for RNA structure prediction. 
Instead, in RNA structure prediction programs, secondary structures are evaluated based 
on thermodynamics to make sure the prediction has a globally minimum energy structure. 
These functions approximate the overall free energy by incorporating parameters for 
different types of loops and base pairing interactions (11). The Das lab shows how a 
recursive stepwise ansatz can take advantage of such energy functions and dynamic 
programming to systematically sample RNA loop conformations at atomic resolution (9).  
 
Recursive stepwise ansatz is similar to ab initio methods that were explored early in the 
field by the Scheraga lab in the 1980s and Levinthal in 1968. These were largely 
abandoned in favor of Monte Carlo and knowledge-based methods in order to overcome 
limited computational power (12). However, as mentioned above, it has been shown that 
biomolecules with noncanonical properties are challenging to model de novo using 
Rosetta and knowledge-based methods because of incomplete conformational sampling. 
For example, a fragment assembly of RNA with full-atom refinement method (analogous 
to Rosetta for RNA modeling), FARFAR, was tested on a benchmark of 32 RNA motifs. 
It could only obtain near atomic accuracy models in half of the cases and failed to 
construct models within 1.5 Å rmsd of the crystallographic conformation (9). The J2/4 
loop of the TPP riboswitch could not be solved by FARFAR even though it is only five 
nucleotides in length because of its irregular properties such as noncanonical loop 
torsions. It soon became clear that the lack of these native torsions in the fragment library 
prevented accurate modeling. In fact, the native structure could be recovered simply by 
inserting native torsions into the fragment library. Enumerative single-nucleotide 



building, which permits fine-grained exploration of torsional conformations that form 
well-packed structures with multiple hydrogen bonds, circumvents this conformational 
sampling bottleneck. Many of the conformations produced by this approach include rare 
torsional combinations observed in native loops but are absent from consensus rotamers 
in the PDB.  
 
Recently in 2011, Sripakdeevong et. al. employed this technique as the stepwise 
assembly (SWA) method in Rosetta to solve RNA loop-modeling problems that have 
confounded current knowledge-based methods. The general recursive scheme consists of 
a single-nucleotide building step, a bulge-skip building step (to allow for extra-helical 
bulges), a chain closure step and a clustering step. Because exhaustive enumeration for 
even a five base-pair loop like the J2/4 loop requires too much computational power, they 
calculated a low-energy ensemble of models for subregions. These subregions are then 
combined by chain closure, and the 1,000 lowest energy cluster centers are selected to be 
analyzed. For the J2/4 loop, they obtained a 0.85 Å rmsd model, which was far closer to 
the native structure than the prediction made by FARFAR as shown in figure 7.  
 

 
Figure 7. Rosetta all-atom energy vs. all-heavy-atom rmsd to the crystallographic 
conformation. De novo models derived by SWA are shown in blue while predictions 
made by FARFAR are represented in red (9).  
 
In total, SWA obtained near native models (<1.5 Å rmsd) for ten of fifteen test cases 
(targets included RNA loops such as a 10-nt loop of the large ribosomal subunit from 
Haloarcula marismortui) compared to the four cases recovered by FARFAR. 
Furthermore, of the five remaining cases, SWA predictions actually had lower energies 
than the optimized experimental structures. SWA did sample models within 1.5 Å rmsd 
of the experimental conformation for four of those five cases, but they were not chosen as 
one of the lowest energy cluster centers. Sripakdeevong et. al. suggest that problems with 
the Rosetta all-atom energy function may account for why some models have lower 
energy than native structures. Nevertheless, it seems that SWA resolves the 
conformational sampling bottleneck. What’s more, SWA successfully predicted the 
structure of a tetraloop/receptor motif (C7.2 tetraloop-docked receptor) in a blind trial (no 
known experimental structure).  The model possessed noncanonical features (same-



stranded G-A base pair and an extrahelical bulge) that were consistent with the chemical 
behavior of the actual receptor in chemical modification experiments. Although only 
results for the implementation of SWA in single-stranded RNA loop modeling have been 
published, there is great optimism that the strategy should be applicable to a diverse class 
of macromolecular modeling problems from modeling multiple RNA strands to 
predicting protein structure at high resolution. 
 
VII. Conclusion  
 
When Rosetta was first introduced to the structural modeling community, it was 
attractive because of its use of fragment library to conduct a coarse-grained 
conformational search before its finer, all-atom refinement stage. Indeed, incorporation of 
this  “knowledge-based” algorithm has allowed Rosetta to excel as evidenced by its 
performance in the CASP competitions. However, progress has slowed since CASP8 and 
CASP9, and demand for even higher resolution models has increased. Ironically, it has 
become clear that relying on already experimentally determined structures in protein 
databases (once an advantageous tool) prevents sampling of the lowest energy 
conformations of a large class of proteins, especially those with noncanonical properties. 
Here, we introduce one of the most promising methods that attempts to overcome this 
barrier: a recursive stepwise ansatz founded on the principles of dynamic programming.  
The success with which it has predicted simple RNA-loop structures suggest that step-by-
step build-up approaches may be the answer to structural modeling especially with the 
advent of massive parallelization of high-performance computer clusters. As CASP 10 
approaches, it will be exciting to see if they are in fact the breakthrough the field needs to 
model protein structure more accurately and efficiently.  
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