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A review of graphical models for gene regulatory network inference using microarray data 

Introduction 

 An important problem in systems biology is the inference of gene regulatory networks 

within complex living organisms. The availability of genome-wide gene expression technologies 

has enabled researchers to make considerable progress towards achieving this goal. With the 

description of complete genome sequences, DNA microarray technology allows scientists to 

simultaneously investigate the whole transcriptome on a single chip. However, the challenging 

task is to efficiently extract useful information and use the data to infer gene regulatory 

networks.  

One way to tackle the problem of reverse engineering gene networks from DNA 

microarray data is by using multivariate probabilistic models, known as graphical models [1]. 

Graphical models are promising tools for the analysis of gene networks because they allow the 

stochastic description of net-like association and dependence structures in complex high-

dimensional data, such as microarray data. In addition, they also offer an advanced statistical 

framework for inference [2]. Among various graphical models, Bayesian networks (BNs) and 

graphical Gaussian models (GGMs) have been used widely to infer gene regulatory networks 

from gene expression data. In this review, the two graphical models, BNs and GGMs, will be 

introduced, followed by a critical review of relevant computational methods for reverse 

engineering gene regulatory networks. These are summarized in Table 1.  

Bayesian Networks  

 A Bayesian network is a graphical model for probabilistic relationships among a set of 

random variables, and the relationships are represented by a directed acyclic graph. In modeling 

gene networks, each node represents one gene, and the relationships between the genes are 

described by a joint probability distribution that captures properties of conditional independence 

between the genes. The genes on which the probability is conditioned are called the parent genes, 

and these parent genes regulate the child gene. However, BNs only model probabilistic 



dependencies among variables and not causality. Thus, the parents of a gene are not necessarily 

also the direct causes of its behavior [3]. BNs offer several advantages in inferring gene networks 

from microarray data. It can describe arbitrary combinatorial control of gene expression and thus 

is not limited to pairwise interactions between genes [4]. Moreover, due to their probabilistic 

nature, BN algorithms are capable of handling noisy data, which are often found in biological 

experiments [5]. 

 BN algorithms, which are used to analyze steady-state data, are unable to infer networks 

involving cycles, such as feedback loops. This is the principal limitation of the BN models. 

However, a dynamic Bayesian network (DBN), which is an extension of BN, can be used to infer 

cyclic phenomena that are prevalent in biological systems. In addition, DBN algorithms can also 

infer direction of causality because they incorporate temporal information [6]. 

 To find the network that best describes probabilistic relationships between variables, the 

score of each graph is calculated to find the graph with the maximum score. The Bayesian 

Information Criteria (BIC) and Bayesian Dirichlet equivalence (BDe) are the most popular 

scoring matrices, and both scores incorporate a penalty for complexity to guard against 

overfitting of data  [7]. Because, ideally, all possible sets of directed acyclic graphs linking the 

genes must be assessed, learning BNs is computationally expensive as the number of graphs is 

super-exponential in the number of genes. Therefore, various heuristic search algorithms have 

been used instead in an attempt to optimize some scoring function. However, the problem with 

heuristic searches is that they often find local maxima and do not converge to the globally 

optimal solution [8].  

Graphical Gaussian Models  

 In order to elucidate functional associations and infer gene networks from genome 

expression data, a popular and simple strategy is to compute the standard Pearson correlation 

between any two genes. An edge is drawn between two genes if the absolute pairwise correlation 

coefficient exceeds a prespecified threshold [9]. The resulting graph is called a relevance 

network where missing edges denote marginal independence. Although the advantages of the 

relevance network are its straight forward approach and low computational cost, this approach is 

only of limited use for understanding gene interaction. A high correlation coefficient between 



two genes could be due to direct interaction, indirect interaction, or regulation by a common 

gene. Therefore, relevance networks are powerful tools for determining “independence” between 

gene pairs (suggested by the absence of correlation), but not for elucidating the dependence 

network [10]. 

 Graphical Gaussian models (GGMs), however, offer appropriate statistical strategies to 

construct gene association networks where only direct interactions among genes are depicted by 

edges. The key idea behind GGMs is to use partial correlations as a measure of conditional 

independence between any two genes. That is, the correlation between two genes is measured 

after the common effects of all other genes are removed. If the partial correlation is different 

from the standard correlation and approaches zero, it can be inferred that the original correlation 

is spurious, as the control genes might be either common anteceding cause, or intervening genes 

[11]. Thus, in these models an edge between two genes represents a direct interaction, and a path 

connecting two genes represents an indirect interaction mediated by other genes in the path [12]. 

GGMs are more powerful than relevance networks in describing gene networks, as non-zero 

correlated gene pairs would not be joined by an edge when they influence each other only 

indirectly through other genes. In contrast to BNs, GGMs are undirected graphical models, hence 

they are conceptually more simple and also do not suffer from a restriction inherent in BNs, 

which cannot contain feedback loops such as directed cycles. However, one disadvantage of the 

undirected edges in GGMs is that the resulting networks cannot describe directionality or 

causality [3].  

 For a microarray dataset, an observed expression data matrix contains n rows, 

corresponding to the samples from n different experimental conditions, and p columns, 

corresponding to the genes being probed. Under the GGM approach, the covariance matrix is 

calculated, and the partial correlation matrix is computed from the inverse of the covariance 

matrix. The GGM is then constructed based on the rule that  no edge is included in the graph if 

the absolute value of partial correlation coefficient is less than some prespecified threshold [11]. 

Unfortunately, this standard GMM theory can only be applied when the sample size n is larger 

than the number of genes p. Otherwise, the sample covariance and correlation matrices are not 

positive definite and cannot be inverted, which in turn prevents the direct computation of partial 

correlation coefficients [13].  



Although today’s high-throughput facilities allow us to investigate experimentally a 

greatly increased number of features, the number of samples cannot be similarly increased. In a 

typical microarray dataset, the number of genes p is usually in the order of tens of thousands, but 

the number of observations n is in the order of tens. This poses a serious challenge to any 

statistical inference procedure. To cope with this “small n, large p” problem in GGMs, two main 

strategies have been proposed in the literature: computation of limited-order partial correlations, 

and use of shrinkage estimators of the covariance matrix to infer GGMs. Examples of methods 

that apply these strategies will be described in the next section.  

 

 

Table 1: A list of computational methods for gene regulatory network inference from DNA 

microarray data presented in this paper.   

Approach Reference Graphical 
Model Key feature 

Banjo  Yu et al. 2004  BN 
Applies a novel influence score to estimate both the 
regulatory sign and relative magnitudes of the 
interaction. 

Seeded Bayesian 
Networks 

Djebbari & 
Quackenbush 2008 BN Incorporates prior information about gene-gene 

interactions to seed the BN analysis. 

Limited-order partial 
correlations Wille et al. 2004 GGM 

Employs first-order conditional independence instead 
of computing full-order partial calculations as in a full 
GGM. 

Shrinkage covariance 
estimators 

Schӓfer & 
Strimmer 2005b GGM Uses a shrinkage approach to obtain reliable 

covariance estimators 

GeneNet Opgen-Rhein & 
Strimmer 2007 GGM Introduces standardized partial variance to convert 

undirected GGMs into partially directed graphs 

 



Banjo: Yu et al. 2004 

 Banjo is a gene network inference software that has been developed by Yu et al. (2004). 

It is based on BN algorithms and implements both BN and DBN. Therefore, it can analyze both 

steady-state and time-series data. Heuristic approaches are used to search the network space to 

find the graph with the best score, which is computed using the BDe metric.  

To recover more meaningful, more interpretable, and more accurate networks, Yu et al. 

developed a novel influence score for BN interactions that attempts to estimate both the 

regulatory sign (activation (+) or repression (-)) and relative magnitudes of the interactions 

between a child variable and each of its parents. This score is computed from the conditional 

probability that a child is in one expression state given that its parent set is in another state. 

Intuitively, a parent is presumably an activator if there is a high probability that a child is in a 

high expression state when the parent is highly expressed and that the child is in a low 

expression state when the parent is low expressed. Conversely, a parent is presumably a 

repressor if there is a high probability that a child is in a low expression state when the parent is 

highly expressed and that the child is in a high expression state when the parent is low expressed. 

When an influence score is zero or close to zero, it means either that the sign of regulation is 

difficult to determine, or the regulation strength is very weak. Thus, this is useful in eliminating 

low-scoring false positive links, although the number of true positives is not increased [5].   

The use of the influence score offers a particular strength to Banjo as identifying 

activation and repression interactions is very important in the study of biological systems. 

Because Banjo employs heuristic methods, one weakness of Banjo is that the search could be 

trapped in local maxima [5]. As a consequence of the DBN algorithms and the influence score, 

Banjo is very accurate, but it has low sensitivity. Banjo is a probabilistic algorithm that requires 

the estimation of probability density distributions, therefore its performance depends on large 

number of data points. It works relatively well in recovering the true network with large 

quantities of data. As the quantity of sampled data is decreased, influence score representation is 

also decreased, but the accuracy of the designated sign is not affected [7]. Due to the limitation 

of statistical inference methods, more data will be required to learn more complex networks 

accurately. Using other types of gene association data together with microarray expression data 

can potentially enhance the ability of BNs to accurately recover gene network structures [14].  



Seeded Bayesian Networks: Djebbari and Quackenbush 2008 

 To cope with the limitations of learning BNs from the imperfect microarray datasets that 

usually provide too few data points to constrain potential models and from the local maxima 

problem of heuristic algorithms, Djebbari and Quackenbush (2008) proposed a new BN 

approach to construct genetic networks from microarray data. They employed prior knowledge 

of preliminary network topologies to provide a useful bias serving as soft constraints and to seed 

the search for a network graph with the best topology.                  

Djebbari and Quackenbush applied the co-occurence method described in Jenssen et al. 

(2001) to infer potential functional associations between genes [15]. For instance, if two and only 

two genes are described in a single article indexed in PubMed, then an interaction between them 

is assumed. This method assigns a co-occurrence edge weight, which counts the number of times 

an interaction appears in the literature relative to the total number of manuscripts surveyed, as 

prior probabilities of interactions between the two genes. In addition, by limiting networks to 

papers containing two and only two genes, they can remove publications that include whole-

genome studies and generate network topologies exhibiting a scale-free behavior. Although 

limiting to two genes is conservative and some interactions might be missed, it allows a prior 

network to have the highest possible confidence without resorting to more ambitious text-mining 

approaches [8].  

In addition to the literature, prior network structures are also deduced from high-

throughput yeast two hybrid protein-protein interaction screens. These datasets represent an 

unbiased screen for interactions, and thus the protein-protein interaction networks have a 

uniform distribution for the prior probabilities for all edges. Because a BN is a directed acyclic 

graph, the initial network used to seed the search must be directed graphs as well. Edges in the 

undirected literature and protein-protein interaction networks are subject to direction assignments 

using a depth-first search algorithm, which is commonly used for cycle detection [16]. Instead of 

using heuristic search, the authors perform model averaging through non-parametric 

bootstrapping (resampling with replacement), which allows them to assign confidence values to 

the individual interactions [8]. 



To compare the performance of BN analyses with and without network seeds, Djebbari 

and Quackenbush compared the resulting networks to known pathways based on the KEGG 

pathway database and evaluated the ability to reproduce known interactions between genes. The 

use of prior network seeds improves the ability of BN analyses to learn known interactions 

between genes relative to a standard, unseeded BN analysis. By varying the bootstrap confidence 

threshold, the authors could show a tradeoff between sensitivity and specificity in detecting 

interactions. Using high confidence thresholds yields high specificity but low sensitivity; many 

interactions are missed, including potential novel interactions. Although this seeded BN 

approach outperforms a standard BN analysis in recovering known interactions and can at least 

extract network graphs from a gene list and refine the graph using expression data, its ability in 

discovering new interactions and build testable networks is still questionable. This will depend 

on one’s ability to manage the tradeoff between specificity and sensitivity and to validate the 

resulting networks, as lowering the confidence threshold not only increases sensitivity, but also 

leads to the identification of many spurious edges [8]. 

Limited-order partial correlations: Wille et al. 2004 

 Wille et al. (2004) used a modified GGM approach based on limited-order partial 

correlations to avoid the “small n, large p” problem. To explore dependencies between two 

genes, Wille et al. do not jointly condition on all remaining genes at a time. Instead, all pairwise 

partial correlations are considered separately. The conditioning set is restricted to single 

variables. Thus, this method is computed for so called first-order partial correlation coefficients. 

The sample Pearson’s correlation coefficient between two genes A and B is computed to 

measure coexpression. Then, for all triples of genes A, B, C, effects of the other gene C on the 

correlation coefficient are examined by computing the partial correlation coefficient conditioned 

on C and not on all other p-1 genes. Similarly to the full GGM approach, if the expression level 

of C is independent of A and B, the partial correlation coefficient would not differ from the 

standard correlation coefficient. However, if gene C coregulates both genes, the partial 

correlation coefficient  is expected to be close to zero. To combine these into a network and 

identify direct coregulation between genes, an edge between two genes will be drawn when their 

pairwise correlation is not the effect of a third gene. However, if there is at least one C that 



makes the partial correlation coefficient equal or close to zero, no edge will be drawn between 

the two genes [17]. 

Due to the simplification in modeling small subnetworks of three genes, this approach 

offers two advantages. First, it can avoid the dimensionality problem that occurs when trying to 

estimate very high-order conditional interactions. Thus, this approach can be applied to datasets 

with moderate sample sizes. Second, because the running time required to calculate conditional 

correlations increases at least exponentially as the order of interactions increases, restricting to 

first-order conditional interactions reduces the computational cost [17]. However, from a 

statistical point of view, the resulting network constitutes something inbetween a full GGM (full-

order) and a relevance network (zero-order) model based on standard correlations. Therefore, 

missing edges could indicate either conditional or marginal independence [18].  

Shrinkage covariance estimators: Schӓfer and Strimmer 2005b 

When the number of genes p by far exceeds the number of available samples n, standard 

GGM methods cannot be used to obtain partial correlation coefficients due to statistical 

unreliability of small samples. A simple approach frequently used to reduce variance is bootstrap 

aggregation or bagging. Schӓfer and Strimmer (2005a) applied this strategy to improve the 

accuracy of estimates of the correlation and covariance matrices. Once regularized estimates of 

partial correlation are identified, they employed an heuristic based on empirical Bayes multiple 

testing in order to find an optimal network. However, the bootstrap variance reduction is 

computationally expensive, especially when dealing with several thousands of genes in the 

genomic settings [2].  

Due to this drawback, Schӓfer and Strimmer (2005b) have proposed an alternative 

method to obtain reliable covariance estimators by using a shrinkage estimator, also known as a 

biased estimator [10]. This method was first introduced by Ledoit and Wolf (2003) [19]. The 

estimator shrinks the sample covariance matrix towards a low-dimensional (biased) estimator of 

the covariance matrix. The biased estimator is constrained and contains fewer parameters than 

the unconstrained, unbiased one. Thus, the constrained estimator will exhibit considerable bias 

and a lower variance than its unconstrained counterpart. Both estimators are combined to 

generate a linear shrinkage estimator, instead of choosing between one of the two extremes. 



Therefore, the shrinkage estimator can be used to minimize the mean squared error by finding 

the best trade-off between error due to bias and error due to variance [10].  

 The ability of this method on inferring gene networks was illustrated by applying to a real 

microarray dataset to reverse engineer an E. coli subnetwork. Schӓfer and Strimmer showed that 

the covariance shrinkage estimator provides large overall gains in the accuracy and in the power 

to recover the true network structure suggested by the hub topology compared with their 

previous approach described in Schӓfer and Strimmer (2005a) [2]. Moreover, this method is 

much less computationally expensive. 

GeneNet: Opgen-Rhein and Strimmer 2007 

  GGM is a correlation network, which is an undirected graph that does not describe 

directionality. Moreover, correlations not only confound direct and indirect interactions, but also 

do not distinguish between cause and effect. Thus, it is only of limited use in representing the 

causal processes such as gene regulatory networks. Therefore, causal analysis usually requires 

different algorithms, such as Bayesian networks, which describe causal relations by a directed 

acyclic graph (DAG). However, these methods generally work well only when dealing with 

small numbers of variables and with large sample size, which is usually not the case for 

microarray data [20]. Thus, Opgen-Rhein and Strimmer (2007) have proposed a new approach 

implemented in GeneNet, which convert correlation (GGM) into causation networks.   

GeneNet applied an algorithm which is an extension of the GGM inference approach 

proposed in Schӓfer and Strimmer (2005b). In the first step, the correlation network is 

transformed into a partial correlation network using the covariance shrinkage estimator to 

uncover topology of the network. Secondly, the undirected GGM is converted into a partially 

directed graph. Edges are removed from the independence graph to obtain the underlying DAG. 

An undirected edge between genes A and B in a partial correlation graph can be interpreted as a  

bidirected edge, in the sense that gene A influences gene B and vice versa. Thus, a directed edge 

can be implied by removing one of these two directions [20].  

In GeneNet, Opgen-Rhein and Strimmer introduced a new term called standardized 

partial variance (SPV), which measures the proportion of variance that cannot be explained by 

other variables. In another word, SPV equals the ratio of the partial variance to the variance, and 



the value ranges from 0 to 1. Thus, when there is no correlation between two genes and the 

partial variance equals the variance, SPV = 1. If gene A  is the cause of gene B and A is 

parentless (A  B), B would tend to be better explained than A, which implies that B has a 

lower SPV. Based on this intuition, they can impose directionality from the less well explained 

variable (large SPV, independent variable) to the more well explained one (lower SPV, 

dependent variable) [20].  

They evaluated the algorithm for discovering causal structure by analyzing a large 

Arabidopsis thaliana expression dataset. The resulting graph is a partially directed network 

containing both directed and undirected nodes. This demonstrates a distinct advantage of this 

approach because it does not force directions onto the edges when directions cannot be 

determined due to complex interactions among the nodes. Since this approach is approximate 

and non-iterative, it is computationally inexpensive and allows screening large-scale dataset for 

causal structure. However, it lacks iterative refinements in the algorithm to remove spurious 

edges, which can be very time consuming [20]. 

Conclusion 

One of the main problems for all statistical inference algorithms when applied to typical 

microarray data is the curse of dimensionality when the number of genes by far exceeds the 

number of observations. Proposed BN and GGM approaches in the literature employ different 

strategies to cope with this problem. Currently, there is not one approach fits all. Different 

situations may require different reverse engineering strategies. The value of each approach 

discussed here will be judged based on its utility. For example, one may use GeneNet first to 

screen large-scale dataset for causal structure to predict a testable model as this approach is not 

computationally expensive. Subsequently, a more computationally expensive approach, such as 

full BN modeling, can be applied to refine the network. Since the curse of dimensionality is still 

an intrinsic problem in genetic network inference from microarray data, novel statistical methods 

remain to be discovered in order to overcome this limitation in systems biology.    
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