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Introduction 
 

For both the computational biologist and the research biologist, the use of multiple 
sequence alignment (MSA) programs to simultaneously align multiple sequences of nucleic 
acids or proteins has become de rigueur.  Successful alignments are used in a number of 
applications, such as  (1) phylogenetic analysis, as a predictor of evolutionary relationships; (2) 
identifying conserved motifs and domains within related families of proteins that then may be 
inferred to play a role in structure and function; (3) structure prediction, in which the role of a 
residue in secondary or tertiary structure (e.g., α helix, β sheet, etc.,) is inferred. 
 

Since the first MSA programs became commonly available in the late 1980's, a number 
of "new and improved" programs have been introduced, giving the researcher a wide variety of 
choices.  Because the many MSA programs use a variety of methods and can yield different 
results, it can be difficult for the researcher to know which program to choose.  When asked what 
the important considerations are in constructing a MSA, most researchers will say that they want 
a program that provides speed and accuracy.  However, even these two simple parameters can 
have very different meanings to researchers in different fields.  The performance speed that is 
acceptable to a research biologist might prove to be prohibitively slow to a computational 
biologist.  Similarly, "accuracy" will depend on several factors related to the types of sequences 
being aligned--whether it is nucleic acid or protein families that are being compared, how related 
the families are, what sequence lengths are being compared, how many sequences are being 
compared, etc.--as well as to the methods employed by the MSA algorithm--progressive vs. 
iterative, matrix-based vs. consistency-based, etc. When faced with such an array of 
considerations, researchers will often simply choose a program with which they are most 
familiar. 
 

In this paper, we review and analyze some of the more popular and available MSA 
programs:  CLUSTAL W, T-Coffee, PROBCONS and MUSCLE.  We begin by reviewing the 
general methodologies behind MSA programs, followed by a summary of the four programs 
listed above.  We finish with a comparison and analysis of the presented programs. 
 
 
The Methodology 
 

The purpose of an MSA is to align sequences in such a way as to reflect the 
biological relationship between the input sequences, but developing a reliable MSA 
program is a very complex problem.  In its most basic form the problem can be stated in 
the following way:  given N sequences and a scoring scheme for determining the best 
matches of the letters (where each sequence consists of a series of letters), find the 
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optimal pairing of letters between the sequences.  Even this simplistic definition 
requires a consideration of the choice of sequence, choice of comparison model and 
optimization of the model. 

 
The most common algorithms in use today are progressive alignments, based on 

the work of Feng and Doolittle (1987).  These algorithms are by nature heuristic and 
therefore do not guarantee any level of optimization, but they do tend to be fast 
(Notredame, 2002).  In brief, a set of N sequences are aligned by performing N-1 
pairwise alignments of pairs of proteins or pairs of intermediate alignments to create a 
distance matrix.  The results of the distance matrix are used to create a (phylogenetic) 
guide tree.  Sequences are added to the alignment one by one, with the most closely 
related sequences aligned first, followed by the more distantly related ones, inserting 
gaps, if necessary (Edgar and Batzoglou, 2006; Notredame, 2007). 

 
The most influential component of progressive algorithms is the scoring schemes 

used by pairwise alignments (Notredame, 2007), in which the best alignment of two 
sequences is defined as the sum of substitution matrix scores for each pair of letters, 
minus gap penalties.  Note that even a pairwise sequence alignment must be further 
categorized as being either a global alignment--one that spans the entire length of the 
input sequence--or a local alignment--regions of aligned sub-sequences that may be 
surrounded by sequences that are completely unrelated. 

 
Pairwise alignment schemes can be divided into two types:  matrix-based and 

consistency-based.  Matrix-based algorithms use a substitution matrix to determine the 
cost of matching two letters.  The important point here is that the score for matching 
two letters depends only on their position and their immediate surroundings.  
Consistency-based algorithms utilize a much larger volume of information:  pairwise 
global and local alignments are compiled; these compiled alignments are used as a 
position-specific substitution matrix during a normal progressive alignment.  As an 
example of consistency-based scoring, consider three sequences A, B, and C.  The 
pairwise alignment of A-B and B-C may produce an alignment of A and C that is 
different from a directly computed A-C alignment and may give us information as to 
the "correct" alignment between A and C (Edgar and Batzoglou, 2006). 

 
Iterative alignments are a refinement of progressive alignments.  Instead of 

depending heavily on the accuracy of the initial pairwise alignments, as the progressive 
schemes do, iterative alignments optimize an objective function:  they use an algorithm 
that produces an alignment that is then refined through a series of cycles until no more 
improvements can be made (Notredame, 2002).  There are a variety of ways to select the 
sequence subgroups and the objective function (see, for example, Hirosawa et. al., 1995).  
Depending on the strategy used to improve the alignment, the iterative method can be 
either stochastic or deterministic.  Deterministic strategies are the simpler of the two.  
Sequences are pulled one by one from an alignment and then re-aligned to the 
remaining sequences.  When no more improvement can be made (i.e., convergence), the 
process is halted.  Stochastic iterative methods use HMM training and simulated 
annealing or genetic algorithms. 

 
The latest generation of MSA programs incorporates constraint-based methods 

into their progressive algorithms.  The constraints generally come from three different 
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sources:  (1) the use of biologically relevant information encoded in databases such as 
PROSITE; (2) the use of local pairwise similarity present in multiple sequence pairs to 
highlight similar regions in otherwise divergent sequences; (3) user-specified regions in 
sequences they wish to see aligned in any multiple alignment computed (Papadopolous 
et. al., 2007). 

 
 

The Programs 
 
CLUSTAL W 
 

The CLUSTAL set of MSA programs were first developed in 1988.  As stated by 
Higgins and Sharp in their 1988 paper, CLUSTAL is essentially a "quick and dirty" 
version of the Feng and Doolittle (1987) pairwise progressive algorithm.  What made 
the CLUSTAL programs so attractive is that they could be run on so-called 
microcomputers and therefore any researcher with a computer could perform sequence 
alignments right in the lab. 
 

Many of the algorithms developed after CLUSTAL are at least in part based on 
the CLUSTAL model, so it is worth exploring this algorithm in some detail. 
 

There are three separate and distinct steps in the CLUSTAL MSA (Figure 1): 
o Calculation of all pairwise sequence similarities, which are then used to construct 

a distance matrix (also called a similarity matrix) 
o Construction of a dendogram (guide tree) from the distance matrix generated in 

step 1 
o Alignment of the sequences in a pairwise manner, following the order of the 

clustering as determined by the guide tree generated in step 2 
 

CLUSTAL W, an improvement on the original CLUSTAL program was introduced 
in 1994 (Thompson et. al., 1994), and its relative speed and sensitivity soon made it the 
method of choice for biologists.  The biggest problem with the original CLUSTAL 
programs is that their algorithms made certain assumptions that are not biologically 
realistic.  The enhanced sensitivity was due to three improvements incorporated into 
CLUSTAL W: the use of a weighted sum-of-pairs, the use of varying gap penalties and 
the use of neighbor-joining instead of UPGMA in the generation of the phylogenetic 
tree. 
 

In older alignment algorithms, single-weight matrices were generated from the 
pairwise alignments.  A single-weight matrix assumes that the sequences in a group to 
be aligned are all equally divergent from each other.  As long as this assumption is true 
then the use of single weight matrices is justified.  However, if the sequences in an 
alignment group are too similar, then a single-weight matrix introduces a bias in favor 
of redundant sequences.  If the sequences are divergent, then mismatches in sequence 
become more prevalent but single-weight matrices do not account for them.  CLUSTAL 
W assigns individual weights to sequences, in part by using neighbor joining to 
construct the phylogenetic tree:  weights are assigned according to the tree branch 
length, which is a measure of their evolutionary distance.  This means that similar or 
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redundant sequences will be downweighted while more divergent sequences are 
upweighted. 

 
CLUSTAL W also changed the way that gap penalties and gap opening were 

determined.  To get an alignment between divergent sequences, alignment algorithms 
use gap penalties and gap extensions, but the older algorithms assigned fixed values to 
both.  This is not biologically realistic, as the gaps found in related proteins are not 
random occurrences.  Regions of conserved structure or catalytic function (e.g., the 
motor domains of myosin or the P-loop nucleotide binding regions found in many 
ATPases) are much less likely to have gaps than the linkers that connect these 
structure/function domains.  Before any pair of sequences or prealigned groups of 
sequences are aligned, CLUSTAL W generates a table of gap opening penalties for 
every position in the two (sets of) sequences.  The initial gap-opening penalty is varied 
in both a residue and a position-specific manner, in order to make gaps more or less 
likely at different positions.  The residue-specific gap penalties and locally reduced gap 
penalties in hydrophilic regions encourage new gaps in potential loop regions rather 
than regular secondary structure.  Finally, positions in early alignments where gaps 
have been opened receive locally reduced gap penalties to encourage the opening up of 
new gaps at these positions. 

 
Although there have been no substantive changes to CLUSTAL W since it was 

first released in 1994, a new member of the CLUSTAL family, CLUSTAL X, was 
introduced in 1997 (Thompson, et. al., 1997).  This version uses the same algorithm as 
CLUSTAL W, but it has features that make it more user friendly (e.g., scrollable 
windows, pull-menus, etc.)  For a review of the CLUSTAL programs, see Chenna, et. al. 
(2003). 

 
T-Coffee 
 

In 2000 (Notredame et. al., 2000), the T-Coffee (Tree-based Consistency Objective 
Function for alignment Evaluation) alignment program was introduced.  This was the first 
alignment program to introduce any meaningful improvements on the CLUSTAL W 
algorithm.  Although T-Coffee is still a progressive alignment method, it is consistency-
based and so takes advantage of a much larger body of information.  It also has the 
ability to consider information from all of the sequences during each alignment step 
and not just those sequences being aligned at a certain stage. 

 
Programs such as CLUSTAL W are called "greedy heuristics."  As we have 

previously described them, they start with pairwise alignments of sequences and 
generate a distance matrix.  This matrix is used to generate a phylogenetic tree and then 
the tree is used to gradually build up the alignment by following the branches of the 
tree.  This method has proved successful for a number of applications, but it does 
possess a flaw that we have not yet discussed: if an error is made in the first set of 
alignments, this error is then propagated through the rest of the alignments and cannot 
be rectified later as the rest of the sequences are added in.  Although T-Coffee is itself a 
greedy heuristic, it attempts to minimize the effect caused by errors in alignment that 
happen early on, by making better use of the available information. 
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T-Coffee has two main features.  First, it uses heterogeneous data sources to 
generate multiple alignments.  The data from these sources are provided to T-Coffee via 
a library of pairwise alignments.  Thus, T-Coffee can compute MSAs using a library that 
was generated from a mixture of local and global pairwise alignments.  Second, it 
carries out progressive alignment in a way that allows it to consider the alignment 
between all of the pairs during the generation of the MSA.  This gives it the speed of a 
traditional progressive alignment but with far less tendency to misalign. 

 
The basic steps in a T-Coffee MSA are as follows (see Figure 2 for a schematic): 

o Generate a primary library of alignments 
 Contains a set of pairwise alignments between all of the sequences 

to be aligned 
 Two alignment sources--one local, one global--for each pair of 

sequences are used; yielding two libraries--one local, one global 
o Derive the weights for the primary library 

 A weight is assigned to each pair of aligned residues in the library 
 The weights are assigned according to sequence identity 

o Combination of the libraries 
 The libraries are pooled in a simple addition process 
 Duplicated pairs are merged into a single entry 
 Pairs that did not occur will not be represented (given a weight of 

zero) 
o Extending the library 

 Combine information so that the final weight, for any pair of 
residues, reflects some of the information contained in the whole 
library 

 Based on taking each aligned pair from the library and checking the 
alignment of the two residues with residues from the remaining 
sequences (consistency-based alignment) 

o Progressive alignment 
 Score for the alignments xi to yj is the sum of the weights of the 

alignments in the library containing the alignment xi to yj. 
 The distance matrix and neighbor-joining tree are determined' 
 The initial pair is fixed at this point; any existing gaps cannot be 

shifted later 
 
MUSCLE 
 

In 2004 the MUSCLE (multiple sequence comparison by log-expectation) 
algorithm was introduced (Edgar, 2004).  MUSCLE is a matrix-based algorithm, and like 
other MSA algorithms, MUSCLE starts with a guide tree construction, where the 
fundamental step is pairwise alignment.  The pairwise alignment is used first for 
progressive alignment and then for refinement.  There are two distinguishing feature of 
MUSCLE.  In determining distance measures for pairs of sequences, it uses both the 
kmer distance (for an unaligned pair) and the Kimura distance (for an aligned pair). A 
kmer is merely a contiguous sequence of letters of length k, also known as a word or k-
tuple.  Sequences that are related will have more kmers in common than expected by 
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chance.  The kmer distance is derived from the fraction of kmers in common in a 
compressed alphabet, which is related to fractional identity.  Because this measure does 
not require an alignment, MUSCLE has a significant speed advantage over other MSA 
algorithms.  The second distinguishing feature is that at the completion of any stage of 
the algorithm, a MSA is available and the algorithm can be terminated. 
 

Interestingly, distance matrices in MUSCLE are clustered using UPGMA, which 
the author says give marginally improved results over neighbor-joining, even though 
neighbor-joining gives a more reliable estimate of the taxonomic evolutionary tree.  He 
explains this by saying that in progressive alignment, the best accuracy is obtained at 
each node by aligning the two profiles that have fewest differences, even if those 
profiles are not evolutionary neighbors. 

 
There are three main stages to the MUSCLE algorithm, as shown in Figure 3.  For 

stage 1, a progressive alignment of the sequences is generated.  The kmer distance for 
each pair of input sequences is calculated, and from this a matrix is constructed.  The 
matrix is used to construct the UPGMA tree.  From the tree, the progressive alignment 
is constructed by following the branching order of the tree. At each leaf, a profile is 
constructed from an input sequence. Nodes in the tree are visited in prefix order 
(children before their parent). At each internal node, a pairwise alignment is 
constructed of the two child profiles, giving a new profile that is assigned to that node.  
This produces an MSA. 
 

Stage 1 introduces error in the form of the approximate kmer distance, which 
produces a suboptimal tree.  Stage 2, the improved progression stage, improves on the 
alignment generated in stage 1.  MUSCLE starts by re-estimating the tree using the 
Kimura distance, which is more accurate but requires an alignment.  A progressive 
alignment is produced, yielding a second MSA.  The trees from stages 1 and 2 are 
compared; MUSCLE identifies a set of nodes for which the branching order is different.  
A new MSA is built if the order of the nodes has changed.  Otherwise the first MA is 
kept. 

 
Stage 3 is the refinement stage.  Here, an edge of the tree from stage 2 is deleted.  

This divides the tree into two sub-trees; the profile of the multiple alignment for each 
sub-tree is calculated. The profiles from the two sub-trees are re-aligned, producing a 
new MSA.  If the new sum-of-pairs score is improved, the new alignment is kept.  
Otherwise it is discarded. These steps are repeated until convergence or until a user-
defined limit is achieved. 

 
ProbCons 

 
The last algorithm we will present is ProbCons--probabilistic consistency-based 

MSA (Do et. al., 2005).  It is a progressive alignment consistency-based algorithm, but 
ProbCons takes a very different approach to the formulation of the sequence alignment 
problem:  it uses a three-state pair-hidden Markov model (HMM) as an alternative 
formulation of the sequence alignment problem (Figure 4, Do et. al, 2005) where 
emissions correspond to traditional substitution scores based on the BLOSUM62 matrix 
and transitions correspond to gap penalties which are trained with unsupervised 
expectation maximization. 
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Other features that distinguish ProbCons from the algorithms we have presented 

thus far include its use of maximum efficiency accuracy instead of Viterbi alignment, 
which is more commonly used on HMMs to generate sequence alignment.  A Viterbi 
alignment is similar to that of Needleman-Wunch, in that it selects a single alignment 
with the highest probability of being absolutely correct.  In contrast, maximum expected 
accuracy selects the alignment with the largest number of correct predictions.  
ProbCons uses probabilistic consistency transformation to incorporate multiple 
sequence conversion information during pairwise alignment.  This is a modification of 
the sum-of-scores method: the transformation is to re-estimate the posterior 
probabilities using three-sequence alignments instead of pairwise alignments. 

 
One final feature of note:  ProbCons does not use any biological concepts such as 

evolutionary guide tree construction and position-specific gap scoring in its algorithm. 
 
The ProbCon algorithm has five main steps: 

o Computation of posterior-probabilities matrices 
 For every pair of sequences x and y, a matrix is computed where the 

terms of the matrix are the probabilities that letter xi and yj are paired 
in an alignment of x and y as generated by the model 

o Computation of expected accuracies 
 The expected accuracy of a pairwise alignment a between x and y to be 

the expected number of correctly aligned pairs of letters, divided by 
the length of the shorter sequence 

o Probabilistic consistency transformation 
 Re-estimate the matrix quality scores by applying the probabilistic 

consistency transformation 
o Computation of a guide tree 

 Use hierarchical clustering 
o Compute progressive alignment 

 Align sequence groups according to order specified in the guide tree 
 
A post-processing iterative step can be applied as necessary.  Here, the alignment is 
randomly partitioned into two groups of sequences and re-aligned as required. 
 
DALIGN and COBALT 
 

In the process of preparing this paper, we learned of two other algorithms that 
deserve at least an honorable mention.  The distinguishing feature of DALIGN 
(Morgenstern, 1998) is that it aligns sequences both locally and globally using a 
diagonal method (hence the name DALIGN).  Rather than compare single residues, it 
compares whole interrupted stretches of residues that would form diagonals in a dot 
matrix; it does not allow for mismatches or gaps.  As a result, it has no gap penalty or 
gap extension, and may leave unrelated sequences unaligned. 

 
COBALT (constraint-based alignment tool) is one of the latest algorithms to be 

released (Papadopoulos and Agarwala, 2007).  What makes COBALT unique is that it 
allows the user to enter constraints: the user can directly specify pairwise constraints 
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and/or can ask COBALT to generate the constraints using sequence similarity, 
(optional) CDD (conserved domain database) searches and (optional) PROSITE pattern 
searches.  COBALT will optionally create partial profiles for input sequences based on 
any CDD search result. 
 
 
Analysis 
 

When assessing the performance of a MSA algorithm, the accepted way of doing 
this is to do empirical tests using an established database of test sequences.  To avoid 
potential pitfalls that are inherent in this method of testing (some algorithms could be 
over-trained on a specific test by finding the parameter combinations that make a 
package look best with a particular set of test cases; global aligners tend to over-align 
sequences by aligning residues and regions of the sequences outside of the conserved 
core that share no structural or homologous relationship; local aligners tend to 
misalign), many software developers now test their programs on several of the many 
benchmarking suites  now available, such as BAliBASE, PREFAB and SABmark.  
Recently, a new simulation software package, Simprot, has been introduced (Nuin et. 
al., 2006).  How these alignment databases are generated and what methods they use to 
determine an accuracy score is a topic for another paper; we will assume that they have 
been tested and found to be useful tools.  (For an analysis of the currently available 
benchmarks, see Blackshields et. al. 2006). 

 
Tables 1, 2 and 3 show the results of testing MSA algorithms with BAliBASE, 

PREFAB and SABmark, respectively.  Note that the tests were run on several programs 
besides just the four that were reviewed in this paper.  From these results we see certain 
trends.  Consider first an overall score for accuracy.  In all cases, a higher overall score 
indicates a better performance.  Of the four programs reviewed here, ProbCons 
consistently has the highest overall score, outperforming CLUSTAL W, T-Coffee and 
MUSCLE on all three benchmarks.  This is particularly significant because ProbCons 
was trained on BAliBASE (Do et. al., 2005), so its performance on PREFAB and 
SABmark provide external validations of the BAliBASE results.  CLUSTAL W, on the 
other hand, had the lowest overall score of the four programs that we reviewed 
(although not the lowest score of all of the programs tested; DALIGN scored even lower 
than CLUSTAL W on all three benchmarks).  Note that CLUSTAL W scored better on 
BAliBASE than it did on the other two benchmarks.  CLUSTAL W was trained on 
BAliBASE, so it is possible that the higher score with this benchmark reflects over-
training.  T-Coffee and MUSCLE are intermediate in accuracy, falling between 
ProbCons and CLUSTAL W. 

 
If we now consider running time, MUSCLE outperforms all of the programs 

reviewed here, in some cases by as much as 20 times (for example, compare the run 
times of MUSCLE and T-Coffee when the BAliBASE benchmark was used, Table 1).  
MUSCLE was optimized for speed (Edgar 2004), so its performance speed is expected to 
be high.  Contrast this with T-Coffee, the slowest of the four programs.  It is interesting 
to note that the speed of T-Coffee is, in all cases, at least an order of magnitude slower 
than MUSCLE, the fastest program, although its accuracy as determined by its overall 
score is comparable to both CLUSTAL W and MUSCLE. 



 9 

 
The four programs reviewed here have also been tested with Simprot, simulation 

software that generates known alignments under realistic and controlled evolutionary 
scenarios (Nuin et. a., 2006).  For these tests, simulated sequences were used to 
investigate the effects of sequence length, indel frequency and length, evolutionary 
distance, terminal gap length and tree topology.  Figure 5 shows the overall results of 
these tests and compares them to the results from a BAliBASE test on the same 
programs.  ProbCons generated the best alignments with Simprot, while CLUSTAL W 
(and DALIGN) had the worst accuracy.  T-Coffee and MUSCLE fall somewhere in the 
middle.  These results follow the trend seen with BAliBASE, PREFAB and SABmark. 

 
For completeness sake, we also report on how COBLAT compares to the four 

programs reviewed in this paper.  Figure 4 shows that COBALT outperforms ProbCons 
on both the BAliBASE and PREFAB benchmarks but not on SABmark; COBLAT does 
better than MUSCLE when both programs are tested with SABmark. 

 
Finally, we mention a report that tests the programs on their ability to detect and 

align multiple sequences that possess insertions and deletions.  These are common 
features in biologically relevant sequences, and their presence does affect the accuracy 
of MSA packages, but the extent to which alignment accuracy is affected by the position 
of insertions and deletions is not often examined independently of other sources of 
sequence variation (Golubchik et. al., 2007).  In brief, data sets were constructed from 
sequences chosen on the basis of their different lengths and organisms of origin, so as to 
control for sequence-specific effects in the alignment.  For each sequence so chosen, it 
was replicated 10 times (Figure 6).  A stretch of either 10 or 30 residues was deleted 
from each sequence.  This shifted the gap origin either by one residue for overlapping 
deletions or by the length of the deletion for no-overlapping deletions.  MSA programs 
were then assessed for their ability to correctly place overlapping gaps within 
sequences that contained overlapping deletions.  The results are shown in Figure 7.  All 
four programs reviewed here preferentially aligned gaps in a single vertical column 
rather than the expected diagonally staggered band.  Different programs opened the 
gap at different positions.  DALIGN was the only exception, being able to recreate the 
correct staggered arrangement in over 60% of the tested alignments. 

 
 

Conclusions 
 

Speed, accuracy, memory:  these are the three main criteria on which all MSA 
algorithms are judged.  Of the three, biological accuracy is arguably the most important.  
With the many MSA algorithms now available, and with their increasingly similar performances 
and accuracy, it is difficult to objectively choose one method over another.  Improvements to 
both precision and speed are continuously being enacted.  Nevertheless, analysis of some popular 
algorithms show that, depending on what is important to the researcher, one method may be 
preferred over another.   

 
CLUSTAL W, the oldest of the programs reviewed here, showed respectable 

performance in both speed and accuracy, although there are certainly programs that are faster 
and more accurate.  The advantage of CLUSTAL W is that it strikes a balance between these 
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measures. Disadvantages of CLUSTAL W are that it has no objective function and there is no 
real way to quantify the resulting alignment. 

 
T-Coffee offers a distinct accuracy improvement over CLUSTAL W, by using a 

combination of local and global pairwise alignments to generate the sequence library, but its 
incredibly slow speed may keep it from being widely implemented. 

 
MUSCLE, with its unique way of calculating distance measures (using kmer distance for 

an unaligned pair and Kimura distance for an aligned pair), progressive alignment using a new 
profile function called the log expectation score, and refinement using tree-dependent restricted 
partitioning, has the clear and distinct advantage of speed.  However, its accuracy is only 
intermediate as compared to ProbCons. 

ProbCons takes an innovative approach to the sequence alignment problem by using an 
HMM.  It does not incorporate any biologically relevant information at all (no position-specific 
gap scoring, no rigorous evolutionary tree construction, etc.). Due to its use of maximum 
expected accuracy as an objective function and the application of the probabilistic consistency 
transformation, it has the highest overall accuracy of the four programs reviewed.  Its speed 
however, could be improved upon. 

 
Finally, a word about COBALT.  This program yielded speed and accuracy results that are 

about intermediate as compared to the four programs reviewed here.  Because it is a constraint-
based program, however, it offers something that many researchers may find exciting--the ability 
to input his/her own pairwise alignments. 

 
An admittedly unscientific survey indicates that even with all of the new algorithms, 

many researchers still prefer CLUSTAL W (personal communication with members of the 
Stanford University Dept. of Biochemistry).  This may be due, in part, to simple familiarity or an 
ignorance of the wealth of other, arguably better, MSA packages.  The prudent researcher would 
do well to avail himself/herself of the many MSA programs at his/her disposal. 
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Figures 
 

 
 

 
 
 
 
 
 
Figure 1.  Flow chart of CLUSTAL MSA strategy 
as described in the text (Higgins and Sharp, 
1988). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2.  Layout of the T-Coffee strategy; the main steps 
required to compute a MSA using the T-Coffee method.  
Square blocks designate procedures while rounded blocks 
indicate data structures (Notredame et. al., 2000). 
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Figures, cont. 
 
 
 
 
 
 
 
 
 
 
Figure 3.  This diagram summarizes 
the flow of the MUSCLE algorithm.  
There are three main stages: Stage 1 
(draft progressive), Stage 2 (improved 
progressive) and Stage 3 (refinement). 
A multiple alignment is available at 
the completion of each stage, at which 
point the algorithm may terminate 
(Edgar, 2004). 
 
 
 
 
 
 
 

 
 
Figure 4.  Basic pair-HMM for sequence alignment 
between two sequences, x and y. State M emits two letters, 
one from each sequence, and corresponds to the two 
letters being aligned together. State Ix emits a letter in 
sequence x that is aligned to a gap, and similarly state Iy 
emits a letter in sequence y that is aligned to a gap. 
Finding the most likely alignment according to this model 
by using the Viterbi algorithm corresponds to applying 
Needleman-Wunsch with appropriate parameters. The 
logarithm of the emission probability function p(.,.) at M 
corresponds to a substitution scoring matrix, while affine 
gap penalty parameters can be derived from the transition 
probabilities {delta} and {epsilon} (Do et. al., 2005). 
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Figures, cont. 

 
 
Figure 5.  Overall average accuracy values obtained with all Simprot's simulated sequences and all BAliBASE's 
references. Results are ordered by date of publication. Values in the same column that are not significantly different 
according to a Wilcoxon signed ranks test (p < 0.05) have the same color; values in black are significantly different, 
and bold font represents the largest value in the column. CPU times are normalized to Mafft FFT-NS-2 and were 
obtained with a 44-sequence alignment of 500 residues (Nuin et. al., 2006). 
 
 
 
 
 
 
 

 
 
Figure 6.  An amino acid sequence of size n was replicated 10 times, and a stretch of either 10 or 30 residues was 
deleted from each replicate, each time shifting the gap origin either (A) by one residue for overlapping deletions or 
(B) by the length of the deletion for non-overlapping deletions. A set of such gapped alignments was generated for 
each amino acid sequence, placing gaps along the length of the sequence (Golubchik et. al., 2007). 
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Figures, cont. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Summary view of alignments of 
highly similar sequences containing gaps 
(dashes) at overlapping positions. 
Misaligned residues are shaded. Alignments 
were generated by sequentially deleting a 
region of 10 residues from the EPB 
sequences and aligning the modified 
sequences with the original sequence using 
Clustal W, DIALIGN-T, MAFFT, 
MUSCLE, PROBCONS, and T-COFFEE. 
Results were compared with the reference 
alignment (REFERENCE) (Golubchik et. 
al., 2007).
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Tables 
 
Table 1.  Performance of aligners on the BAliBASE benchmark alignments database 

 

 

 
Ref 1 (82)  

 
Ref 2 (23)  

 
Ref 3 (12)  

 
Ref 4 (12)  

 
Ref 5 (12)  

 

Overall 
(141)  

 
       

Aligner  
 

SP  
 

CS  
 

SP  
 

CS  
 

SP  
 

CS  
 

SP  
 

CS  
 

SP  
 

CS  
 

SP  
 

CS  
 

Time 
(mm:ss)  

 
      

Align-m  76.6  n/a  88.4  n/a  68.4  n/a  91.1  n/a  91.7  n/a  80.4  n/a  19:25        

DIALIGN  81.1  70.9  89.3  35.9  68.4  34.4  89.7  76.2  94.0  84.3  83.2  63.7  2:53        

CLUSTALW  86.1  77.3  93.2  56.8  75.3  46.0  83.4  52.2  85.9  63.8  86.1  68.0  1:07        

MAFFT  86.7  78.1  92.4  50.2  78.8  50.4  91.6  72.7  96.3  85.9  88.2  71.4  1:18        

T-Coffee  86.6  77.4  93.4  56.1  78.5  48.7  91.8  73.0  95.8  90.3  88.3  72.2  21:31        

MUSCLE  88.7  80.8  93.5  56.3  82.5  56.4  87.6  60.9  96.8  90.2  89.6  73.9  1:05        

ProbCons  90.1  82.6  94.4  61.3  84.1  61.3  90.1  72.3  97.9  91.9  91.0  77.2  5:32        

ProbCons-
ext  

 

90.0  
 

82.5  
 

94.2  
 

59.1  
 

84.3  
 

61.1  
 

93.8  
 

81.0  
 

98.1  
 

92.2  
 

91.2  
 

77.6  
 

8:02  
       

Columns show the average sum-of-pairs (SP) and column scores (CS) achieved by each aligner for each of the five BAliBASE references. All 
scores have been multiplied by 100. The number of sequences in each reference is given in parentheses. Overall numbers for the entire database 
are reported in addition to the total running time of each aligner for all 141 alignments. The best results in each column are shown in bold (Do et. 
al., 2005). 

Table 2.  Performance of aligners on the PREFAB protein reference alignment benchmark 

 

 

Aligner  
 

Overall (1927)  
 

Time  
 

DIALIGN  57.2  12 h, 25 min  

CLUSTALW  58.9  2 h, 57 min  

T-Coffee  63.6  144 h, 51 min  

MUSCLE  64.8  3 h, 11 min  

MAFFT  64.8  2 h, 36 min  

ProbCons  66.9  19 h, 41 min  

ProbCons-ext  
 

68.0  
 

37 h, 46 min  
 

Entries show the average Q (equivalent to SP) score achieved by each aligner on all 1927 alignments of the PREFAB database. All scores have 
been multiplied by 100. Running times for programs over the entire database are given for each program in hours and minutes. The best results in 
each column are shown in bold.
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Tables, cont. 

Table 3.  Performance of aligners on the SABmark sequence and structure alignment benchmark 

 

 

 
Superfamily (462)  

 
Twilight zone (236)  

 
Overall (698)  

     

Aligner  
 

fD  
 

fM  
 

fD  
 

fM  
 

fD  
 

fM  
 

Time (mm:ss)  
    

Align-m  44.4  58.9  17.1  43.0  35.2  53.5  56:44     

DIALIGN  50.3  42.5  22.5  19.2  41.0  34.6  8:28     

CLUSTALW  53.7  38.7  24.8  15.2  43.9  30.8  2:16     

MAFFT  54.1  40.0  24.8  16.0  44.2  31.9  7:33     

T-Coffee  55.4  41.8  26.4  18.0  45.6  33.7  59:10     

MUSCLE  55.9  40.1  27.6  17.5  46.4  33.0  20:42     

ProbCons  59.9  45.0  32.1  21.7  50.5  37.1  17:20     

ProbCons-ext  
 

59.9  
 

45.3  
 

32.0  
 

22.1  
 

50.5  
 

37.5  
 

23:10  
    

Columns show the average developer (fD) score (equivalent to sum-of-pairs [SP] score) and modeler (fM) score achieved by each aligner for the 
"Superfamily" and "Twilight Zone" sets in the SABmark database. All scores have been multiplied by 100. The number of sequences in each set 
is given in parentheses. Overall numbers for the entire database are reported in addition to the total running time of each aligner for all 698 
alignments. The best results in each column are shown in bold (Do et. al., 2005). 

Table 4. Root mean square deviation of Q-score for COBALT, Clustal W, MUSCLE, PCMA and ProbCons restricted to core regions on various 
benchmarks 

Tool Bali HOM IRM PREFAB SAB 

 

COBALT versus ProbCons 6.71 (–s) 9.34 (s) 16.61 (0.8175) 16.39 (–s) 9.98 (0.1208) 

COBALT versus PCMA 8.76 (–0.001) 11.60 (s) 15.27 (–s) 17.35 (–s) 12.99 (s) 

COBALT versus MUSCLE 10.32 (0.0094) 10.07 (s) 51.66 (s) 16.48 (–0.0011) 13.05 (s) 

COBALT versus Clustal W 16.88 (s) 12.37 (s) 76.92 (s) 20.89 (s) 14.51 (s) 

ProbCons versus PCMA 7.02 (0.0011) 8.17 (s) 17.56 (–0.0017) 13.23 (s) 9.01 (s) 

ProbCons versus MUSCLE 9.69 (s) 6.22 (s) 46.68 (s) 13.49 (s) 9.91 (s) 

ProbCons versus Clustal W 17.31 (s) 9.75 (0.0004) 73.04 (s) 20.87 (s) 13.43 (s) 

PCMA versus MUSCLE 10.97 (s) 7.94 (0.4581) 54.01 (s) 14.90 (0.0427) 9.46 (0.09) 

PCMA versus Clustal W 17.32 (s) 5.93 (–0.1797) 79.14 (s) 18.97 (s) 11.77 (s) 

MUSCLE versus Clustal W 13.21 (s) 8.64 (–0.1933) 36.73 (s) 18.36 (s) 10.41 (0.0059) 
 

Significance is given in brackets and is calculated using Friedman's rank sum test, where the value ‘(s)’ means a P-value of <1E–10. A negative P-value 
means that the method on the right performed better (had a lower average rank) than the method on the left (Papadopoulos and Agarwala, 2007).
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