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Biological network analysis by division into modules, motifs, and themes based on physical 

and functional interactions between genes 

 

Introduction 

The complex system of the cell is a network of interconnections - proteins interact with 

other proteins or with DNA, and genes can interact functionally with one another.  Cellular 

networks can be broken down into simpler components to facilitate their study.  Three different 

types of analysis – modules, motifs, and network themes – that can be utilized to simplify the 

intricate web of biological relationships will be discussed.  How these analyses are carried out, 

what type of information they show, what conclusions can be drawn from them, how these 

methods can vary from study to study, and what kinds of limitations they have will be addressed.  

The information that can be gained from the study of the individual components and patterns 

within a network may be extrapolated and provide greater insight about the network as a whole.       

 

Delineating modules for the study of a biological network 

Networks can be utilized to describe global interaction data in an organism, with the 

nodes representing genes and their links, also known as ‘edges’, describing some form of 

interaction between them.  Since it is extremely difficult to analyze the underlying mechanism of 

a biological network as a whole, it is advantageous to perform an algorithm for modularization of 

the network.  Modularization is a process which divides a network into smaller units for better 

understanding and analysis of the entire network. Certain criteria are used to define a module, 

which is simply a subset of the original biochemical network that tends to have minimal 

dependency on the rest of the network.  Unlike studying the network as a whole, this enables the 

easier study of individual and somewhat independent modules in order to gain more insight on 

the entire network.  

Popular existing methods for partitioning biological networks include the graph 

partitioning and community structure detection techniques (1, 2, 9-11).  The graph partitioning 

technique divides a set of tasks among the processors of a parallel computer to minimize the 

necessary amount of interprocessor communication.  The number and size of the groups into 

which the network is to be split is based upon the number of processors, along with an 

approximate figure of the number of tasks that each processor can handle.  As a result, the best 
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division of the network is determined without addressing whether a good division even exists.  

Community structure detection, on the other hand, assumes that the network under study divides 

naturally into subgroups, and the experimenter’s job is to find those groups.  This may be 

considered more ideal than the graph partitioning approach since the number and size of the 

subgroups are determined by the network itself and not by the experimenter.   

 

Utilization of an algorithm to specify modularization of a signaling pathway 

A more novel method of network partitioning is described by Losiana et al., who propose 

an algorithm for modularization of MAPK and calcium signaling pathways through comparative 

analysis among different species (7, 8). The algorithm starts with detection of a node n having 

maximum number of relations in the node pool E for a given network.  The module then grows 

in size by including immediate neighbors of the starting member in successive steps. Once a 

module is initialized, the total number of relations (Tn) of every individual member is considered.  

The neighbors are either included into or excluded from the module depending on the number of 

their relations being present inside or outside the module.  A complexity level c, is used to 

determine whether or not a member is included in the module – a member with less than or equal 

to a certain number of relations outside the module, termed the complexity level c, is included in 

the module.  The complexity level is a term that is specified and varied by the user.  For a node 

in a module, if the number of relations lying inside the module is equal to the total number of 

relations associated with the node, the member is considered to be permanent.  If a node in a 

module has more than c relations that lie outside the module, it gets excluded from the module.  

These extension and exclusion processes continue until there are no new immediate neighboring 

nodes to be included, or no node is left to be declared permanent.  Once a member of declared 

permanent, it gets removed from the node pool E in order to avoid the chance of a single member 

to be included in more than one module.  After successful completion of the creation of a 

module, the algorithm will search for another starting point and repeat the previous steps to 

create another module.  The process of creating modules will continue until all of the nodes 

present in the node pool E have been exhausted.  Figure 1 describes the module construction 

process. 

The proposed modularizing algorithm was applied to calcium signaling pathways and 

MAPK signaling pathways belonging to various species.  Modules were created from both 
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calcium and MAPK signaling pathways of H. sapiens for different values of c.  The calcium 

signaling pathway of H. sapiens contains 55 nodes, one of which is isolated.  These 54 nodes 

having 59 relations among them is depicted in Figure 2.   

Modules were created from the same pathway for complexity level (c) of 1, 2, 3, 4, 5, 6, 7 

and above.  A trend was observed in that the higher the complexity level, the fewer the number 

of modules were obtained, which is to be expected since the majority of genes tend to have fewer 

interactions.  For example, for c = 1, 11 modules were obtained, whereas for c = 7, the whole 

network emerges into a single module.  Once biologically significant modules at some value of c 

were obtained, the question of whether to proceed further and continue modularization at higher 

values of c to get more meaningful modules or stop the process was addressed.  Modularization 

for higher values of c caused modules to increase by several nodes and relations, making the 

modules large and complex, which goes against the primary objective of dividing a complex 

network to simpler units.  Therefore, it can be assumed that after a certain level, modularization 

with increasing c-value will yield similar results with that of previous complexity level or the 

modules will be so much larger that their study and analysis will be difficult.  Since 

approximately biologically significant modules were obtained for c = 3, the c-value of 3 was 

fixed to study all signaling pathways in the different species.  However, the authors failed to 

address how the biological significance for a specific c value is determined, which leads the 

reader to believe that it may be determined arbitrarily and may be a source of variation or error.  

Another limitation of the algorithm is that it is based on the database from which the data is 

taken.  The same algorithm applied to different databases may result in the creation of different 

modules.        

In certain species when only part of the pathway is functional, modularized study is 

extremely helpful.  For instance, one module of the human calcium signaling pathway was 

consistent among other species studied, while other modules were not present in certain species.  

Therefore, the other modules can be avoided and the consistent module of human calcium 

signaling pathway can be compared with that of the other species instead of comparing the whole 

pathway.  When analyzing a very large network, these types of inferences may save time and 

cost of wet lab experiments by avoiding less important verifications.  However, a downside to 

the limitation of studying a single module for comparative analysis across species is that other 

modules that may provide additional insight for the entire network are neglected.  In addition, 
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certain genes that are essential to a subnetwork may be excluded from a module because they 

lack a sufficient number of interactions with the genes within the module.  Additionally, the 

different types of interactions between nodes may be important when deciding which genes to 

include in a module.  In general, the creation of modules within a network is not extremely 

informative. However, modules facilitate easier analysis and allow for further study of the 

specific components of the module through the comparison of modules consistent in different 

species. 

 

Conserved network motifs describe protein-protein interaction 

A more informative method of analyzing a biological network is the identification of 

patterns that describe protein interactions.  Network motifs have been developed to describe 

simple patterns of interconnection in networks that occur more frequently than expected when 

biological networks are compared to randomized networks (6, 12).  Motifs can be considered as 

elementary building blocks of the modules that compose complex networks.  In general, a motif 

describes the physical interaction between genes, which include interactions among transcription 

factors and their targets, as well as protein-protein interactions.   

An algorithm is used to detect network motifs, which are recognized as recurring, 

significant patterns of interconnections.  The network is first scanned for all possible n-node 

subgraphs, or any pattern of interaction between n genes, and the number of occurrences of each 

subgraph is noted.  Since each network contains numerous types of n-node subgraphs (Fig. 3), 

the real network is compared to suitably randomized networks and only patterns appearing in the 

real network at numbers significantly higher than those in the randomized networks are selected 

(Fig. 4).  In order to determine the statistical significance of the patterns found, randomized 

networks that have the same single-node characteristics as the real network are created.  

Specifically, each node in the randomized networks has the same number of incoming and 

outgoing edges as the corresponding node as in the real network.  The study of motifs as 

described by Milo et al. determined that the concentration of motifs in subnetworks, pieces of 

various sizes of the full network, is about the same as that in the full network.  Therefore, the 

study of motifs in individual modules may be both informative and relative to the entire network.  

However, as shown in the study, it may be more rewarding to analyze larger subnetworks, since 

the larger the network is, the more significant the motifs tend to become.          
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Whether motifs in the interaction network provides any useful information to the 

organization of cellular interactions is oftentimes addressed.  Several groups have examined the 

role of motifs by attempting to describe their biological functions as well as their existence based 

on evolutionary selective pressure.  A well-known indicator of the conservation of specific 

cellular functions is the evolutionary retention of orthologous proteins that are responsible for 

performing similar functions.  The tendency for motifs, or their specific components, to conserve 

evolutionarily is therefore indicative of the importance and involvement of motifs in specific 

biological functions.     

To determine the presence of any special evolutionary pressure acting to preserve motifs, 

Mazurie et al. performed a protein comparative analysis between Saccharomyces cerevisiae and 

four hemiascomycetes, which were chosen based on sharing many functional similarities with S. 

cerevisiae yet spanning a broad range of evolutionary distances (5).  The transcriptional 

regulatory network constructed and investigated by Guelzim et al. (3) and the protein-protein 

interaction data in the Database of Interacting Protins (DIP) was utilized to construct a network 

with 476 nodes, 905 directed transcriptional edges, and 221 undirected protein-protein edges. 

Motifs within the different organisms were compared through the quantification of a 

value, termed the evolutionary fragility, based on the number of the organisms in which a 

particular motif is found.  A small value for the fragility indicated that the genes composing the 

motif tended to co-occur in the other compared organisms, suggesting an evolutionary pressure 

to preserve the motif based on functional importance.  This may not be the best method to 

quantify evolutionary conservation, however, because the organisms analyzed were closely 

related as members of the same class within fungi.  The study determined that although there was 

a higher abundance of genes that have a low evolutionary fragility (suggesting high pressure for 

co-evolution) in the enriched motifs, there was no statistically significant difference in 

evolutionary co-existance between enriched motifs and all the interaction patterns found (Fig. 5).  

However, I do not feel confident about this conclusion and the interpretation of evolutionary 

fragility- the motifs composed of genes taken at random were not equally distributed when 

quantified through evolutionary fragility and also had fairly high levels of abundance.         

The possible role of motifs in biological functions was also analyzed through the 

comparison of known biological information (Fig. 6).  According to Mazurie et al., the roles of 

the motifs identified are deemed not evident because the current model of the pathway can be 
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described without any reference to them.  For example, the three proteins Cbf1p, Met4p, and 

Met28p always act as a complex.  However, this information does not emerge when analyzing 

the topology of the network, since the topology is also compatible with the three proteins acting 

separately.  In general, the motifs were described as insufficient, misleading, and failed to 

capture the complexity of the interwoven interactions.   

The findings of another group, Wuchty et al. (13), show that in Saccharomyces 

cerevisiae, proteins organized in motifs are conserved to a substantially higher degree than those 

that do not form motifs.  The conservation of 678 S. cerevisiae proteins with an ortholog in each 

of five higher eukaryotes (A. thaliana, C. elegans, D. melanogaster, M. musculus and H. sapiens) 

was studied out of the total 3,183 proteins composing the yeast protein interaction network.  This 

differs from the Mazurie et al. study since a substantially larger number of proteins were 

analyzed and the species compared are more diverse and complex.  In addition, the definition of 

a conserved motif required each of its protein components to have an ortholog in each of the five 

higher eukaryotes.  Substantially different conservation rates for proteins in the different motifs 

were found (Table 1).  A random ortholog distribution was tested to determine the validity of the 

findings, which showed very low conservation rates compared to that of the natural system.  The 

fraction of the original yeast motifs that is evolutionarily fully conserved, shown in the last 

column of Table 1, was determined by calculating the ratio between the real and the random 

conservation rates.  The conservation ratio for each motif was greater than one and increased 

considerably for larger motifs.  Larger motifs tended to be conserved as a whole, with each of 

their components having an ortholog.  In general, as the number of nodes in a motif and number 

of links among its constituents increased, the evolutionary retention of the constituent proteins 

was more complete.  The exceptionally high conservation rates strongly suggest that 

participation in motifs substantially influences the evolutionary conservation of the specific 

components.   

These findings contrast from those of Mazurie et al., probably because the previous study 

performed the evolutionary conservation analysis differently.  The network motifs were 

categorized based on the rate of evolutionary conservation but the different types of network 

motifs were not distinguished.  In this study, the natural conservation rate is compared to the 

random conservation rate for each specific type of network motif.  In addition, the rates of 

random conservation are extremely low, as should be expected for a control.   
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In order to examine if the specific function of the yeast proteins within motifs affects 

their rate of evolutionary conservation, Wuchty et al. assigned each previously identified 

conserved yeast motif orthologous to humans to the functional class to which its protein 

components belong (Table 2).  Larger motifs seemed to have more functional homogeneity.  This 

seems logical since larger motifs were found to have higher rates of evolutional conservation, 

and motifs that are evolutionarily conserved would also share the same functional class, since 

orthologous genes often have similar functions.  This is a more generalized analysis than 

Mazurie et al. since motif functions were classified into very broad groups, such as cell cycle, 

transcription, and protein synthesis, instead of looking to see whether each motif would provide 

detailed insight into its specific function within its subnetwork.  Also, the motifs that were 

classified into different functions in yeast consisted of the subset of proteins that had an ortholog 

in humans, and so it would be more likely that a high rate of functional conservation would be 

observed.  Wuchty et al. claim to observe substantial functional class-dependent differences in 

the evolutionary conservation of motifs.  For three functional classes (subcellular localization, 

protein fate, and transcription), each of the 11 studied motifs were considerably overrepresented, 

whereas few to no functional classes had only one or two characteristic motifs.  I would argue 

that because only three functional classes had only one or two characteristic motifs (transport 

facilitation, regulation, and cellular transport), this would reflect that the specific function of the 

yeast proteins within motifs does not affect their rate of evolutionary conservation.  It is also 

important to realize that overrepresented motifs were not found for many important classes, 

including energy, cellular fate, cellular communication, cellular organization, metabolism, and 

protein binding.      

Motifs may allow greater insight into the larger network in which they are contained.  For 

example, fully connected motifs tend to identify protein complexes. Large numbers of 

interactions with uncharacterized proteins may indicate functional relation, suggesting that 

specific motifs could be used to predict the functional role of the unknown protein components.   

On the other hand, in larger protein complexes, not all proteins have direct interactions with each 

other, and thus motifs capture only some local, physically interacting components of the entire 

complex.  Transitory macromolecular associations like protein complexes and interactions 

between a whole protein complex and a target are oftentimes missed and may be represented as 

individual links between each component and the target. Furthermore, the use of networks to 
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describe biological interactions may be misleading since it ignores important aspects of detailed 

biological dynamics, such as localization in both space and time, protein modifications, and the 

formation of multimeric complexes.   

Databases may also incorrectly represent the biological context of gene interactions. The 

quality of the motifs identified is determined by the quality of results from the databases used.  In 

general, how the motifs were identified in the two studies may influence the types and numbers 

of motifs that were analyzed.  Patterns that are functionally important but not statistically 

significant may be overlooked, and motifs consisting of higher number of nodes than the ones 

studied may also be informative but not included.  Importantly, the great majority of motifs are 

embedded in larger networks and are likely to perform a specific functional task depending on 

the context.    

 

Reconstruction of network pathways into network themes based on direct and indirect 

gene interactions 

Besides the physical interactions involved in signaling between biomolecules, functional 

interactions should also be taken into consideration (4).  For certain types of networks, such as 

well-characterized signaling pathways, organizational principles can be determined through a set 

of well-established computational methods in an unbiased fashion, as described for module 

specification and motif recognition.  However, there is a need to develop methods for 

discovering organizational principles of integrated networks that combine different types of 

interactions between genes. In addition to conventional protein-protein interaction data, a 

number of approaches have been developed for identifying co-regulated gene modules.  Certain 

types of interaction information, such as genetic interactions obtained from synthetic lethality 

screens, do not necessarily indicate direct physical interactions between gene products.  Links 

between two genes can also be derived from computational analysis of datasets that include 

information about sequence similarity or the level of gene expression under specific conditions.  

The study by Zhang et al. presents an approach for integrating multiple types of 

biological interactions (14).  The authors simultaneously use five different yeast datasets that 

include both direct physical interactions (protein complexes and transcriptional regulation) and 

indirect functional interactions (genetic interactions, gene-expression correlation, and sequence 

homology).  The overall approach used in this work first decomposes the combined interaction 



Jennifer A. Chen 
Biochem 218 Final Project 

 9 

network into multi-color network motifs, in which each color corresponds to one type of 

interaction data, and then assembles these motifs into network themes consisting of overlapping 

motifs.  Although network motifs are considered the building blocks of a biological network, 

they may not necessarily correspond to functional building blocks of the actual networks inside a 

cell.  The network theme describes recurring higher-order interconnection patterns that 

encompass different network motifs.  This reflects a common organizational principle of the 

same type that can also be tied to specific biological phenomena.   

In the study, 12 three-node network themes were identified as enriched, 7 of which 

described known biological phenomena.  For example, multiple motifs containing a transcription 

factor that regulates two physically interacting proteins can be combined into a single theme 

corresponding to a protein complex whose component proteins are controlled by the same 

transcription factor (Fig. 7, a-c).  Other types of themes involve genetic interactions.  One of 

these includes the ‘alternative subunits’ theme, which describes two genes connected to each 

other by synthetic lethal interactions and to other members of the complex by protein-protein 

interactions.  A second genetic-interaction-based theme, the ‘compensatory complex’ theme, 

consists of two protein complexes internally connected by protein-protein interactions that are 

bridged by a large number of genetic interactions (Fig 7, d-f).  This theme indicates a structure in 

which either of the complexes is needed to perform an essential function, but the complexes can 

compensate for one another.   

An approach that integrates a more diverse set of interaction data, as described in Zhang 

et al., is advantageous since it may discover network themes that have weaker support from only 

one type of data such as protein-protein interactions.   However, the network theme that is 

constructed may vary depending on the computational method used and the databases from 

which the physical and genetic interactions are derived.  Also, only a subset of total information 

about a specific type of interaction may be available.  For example, at the time of the Zhang et al. 

study, only 4% of yeast gene pairs had been examined for synthetic genetic interactions.  Many 

potential network themes may be overlooked simply because they fail to achieve statistical 

significance.  Another limitation is that the approach is applied to a static interaction network, 

whereas in reality only subsets of interactions are active under any particular biological 

condition.  Analysis should therefore be extended to condition-dependent network structures, 

constructed by combining gene expression and physical interaction data.  Overall, the network 
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theme is an excellent approach that is able to address the limitations of more basic forms of 

network analysis, specifically through the inclusion of indirect gene interactions and the 

integration of multiple types of interactions.   

 

Conclusion 

Through the breakdown of the complex cellular network into smaller components, the 

physical and functional relationships among genes, proteins, and other macromolecules can be 

studied.  The organization of networks into modules, motifs, and themes was discussed with 

respect to the types of information they can provide in order to gain more insight about the 

network as a whole.  Modularization is a process that divides a network into self-sufficient units 

which facilitates analysis of its specific components.  The identification of similar modules in 

different species may allow the function of similar proteins within the module to be extrapolated.  

Network motifs are overrepresented patterns that describe protein interactions.  Whether motifs 

play a role in specific biological function and contribute to evolutionary selective pressure of the 

proteins within the motif is up to debate.  Network themes, which describe higher-order 

interconnection patterns that encompass different types of network motifs, are a more 

comprehensive and integrative analysis of the different types of physical and functional 

interactions that occur between genes in a network.  Overall, these different methods of reducing 

a complex network into smaller components can provide information that can be tested 

experimentally in order to gain greater insight about how the network is able to function as a 

whole.   
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FIGURES 

 

 
 
 

Figure 1.  Stages in construction of a module. This figure gives stepwise construction of a 
module for c = 2. After each extension, nodes having all their relations inside the module are 
declared permanent. Nodes having more than two out-relations are excluded from the expanding 
module, and the rest are taken as possible members under consideration and their immediate 
neighbors are included during the next phase of extension. (7, 8) 
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Figure 2. KGML layout for calcium signaling pathway of H. sapiens. (7, 8) 
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Figure 3.  All 13 types of three-node connected subgraphs.  (6) 
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Figure 4.  Schematic view of network motif detection. Network motifs are patterns that recur 
much more frequently (A) in the real network than (B) in an ensemble of randomized networks. 
Each node in the randomized networks has the same number of incoming and outgoing edges as 
does the corresponding node in the real network. Red dashed lines indicate edges that participate 
in a specific motif, depicted in the bottom left corner of (A), which occurs five times in the real 
network.  (6)  
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Figure 5.  Categorization of evolutionary fragility among different interaction patterns.    
Histograms of the evolutionary fragility of interaction patterns belonging to the following three 
classes are shown: instances of network motifs (red); generic patterns of interacting genes, 
irrespective of their abundance (black); patterns composed of genes taken at random (white). The 
five possible values (in increasing value 0 to 4) of the evolutionary fragility are reported on the 
x-axis. A small fragility value indicates that all the genes composing the interaction patterns tend 
to co-occur in the other genomes compared and point to evolutionary pressure acting to preserve 
the interaction pattern. (5) 
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 Figure 6. Comparison of motifs to known biological pathways. 
(a) Methionine (MET) 
(b) nitrogen catabolite repression (NCR) 
(c) pseudohypal growth/mating (HYPE) 
(d) regulation of early meiotic genes (CCYCLE)  
(e) pleiotropic drug resistance (PDR)  
Subnetworks with the identified motifs within the pathway drawn from the interaction databases 
are shown on the left.  A schematic representation of the regulation mechanisms for the same 
pathways, based on the present experimental knowledge, is shown on the right. Full lines 
represent transcriptional regulation, dashed lines non-transcriptional regulation, and wavy lines 
transformations and syntheses. Arrowheads, positive regulation; lines ending in a terminal bar, 
negative regulation. (5) 
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Table 1.  Evolutionary conservation of motif constituents.  (13) 

 

The third column gives the number of motifs of a given type found in the yeast protein 
interaction network of 3,183 proteins.  678 proteins were identified that have an ortholog in each 
of the five higher eukaryotes studied.  In this subset, all motifs for which each component belong 
to were identified.  The natural conservation rate indicates the fraction of the original yeast 
motifs that is evolutionarily fully conserved.  The conservation ratio is determined by comparing 
the natural conservation rate to the random conservation rate for each type of motif.        
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Table 2.  Overrepresentation of human orthologous motifs in various functional classes of yeast 
proteins.  (13) 
 

 
 
The number of each characteristic motif belonging to a specific functional class was determined.  
All motifs that are overrepresented by a factor of at least ten compared with a random 
configuration is listed, with the specific Z value shown next to the motifs.     
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Figure 7.  Examples of motifs, themes, and thematic maps in biological processes.  (a-c) A 
theme capturing the co-regulation of members of a protein complex by a pair of transcription 
factors.  (d-f)  The ‘compensatory complex’ theme, in which one complex can compensate for 
the other in function. (4, 14) 
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