
William Chen
wcchen@stanford.edu

Biochem218
Final Project

6/6/2002

A comparison of search algorithms in
identifying all the proteins from the

PROSITE protein database

Abstract
Commonly used methods for searching protein databases include the Smith-Waterman,
the Gapped BLAST, and Ungapped BLAST algorithms. In order to evaluate their
efficiency in finding the members of protein families, a Perl script was written to take all
the protein families from the PROSITE protein database and perform a sequence
similarity search using each of these three algorithms. The results for each search were
then compared to each other to determine if there are any patterns of improved
performance for one algorithm over the others. Analysis of this dataset of over 1500
protein families finds that the Smith-Waterman searches were the best overall and
consistently performed better on the larger protein families, performing significantly
better on families with greater than 300 members. However, no consistent pattern for the
Ungapped BLAST or the Gapped BLAST searches was found.

Introduction
Upon sequencing a previously uncharacterized protein, one of the first methods of
analysis commonly used is to run a similarity search for other proteins already deposited
in the various databases available. High degrees of similarity are often due to common
ancestry (homology) preserved over evolution (Shpaer et al., 1996). If homologous
proteins are identified, this simple search can potentially yield great amounts of
information about the newly sequenced protein due to the fact that homologous proteins
share a common three-dimensional structure and also often share common active sites or
binding domains (Pearson, 1997). In addition, homologous proteins may also share
common functions due to evolutionary conservation (Pearson, 1997). Having this type of
information can greatly aid a researcher, potentially reducing months of work to a single
afternoon; however, it is key that the proteins identified are truly homologous and not
spurious false hits.

Common protein similarity searches utilize the BLAST (Basic Local Alignment Search
Tool) (Altschul et al., 1990) or Smith-Waterman (Smith and Waterman, 1981)
algorithms. Many studies have been conducted to evaluate the performance of these
algorithms in identifying sequence similarities (Shpaer et al. , 1996; Pearson, 1995). Key
considerations in evaluation include the ability to identify between true homologues
(sensitivity) and unrelated proteins (selectivity), and the time necessary to perform the
search (speed).

Shpaer et al. (1996) found that protein searches using BLAST (BLASTP) have increased
speed over Smith-Waterman, but do not always produce the most accurate possible
results. Some of the lost accuracy can be attributed to the fact that the BLAST program
often finds several alignments, that when combined, are statistically significant, but if any
one of these alignments is missed, the overall result may be also be missed (Altschul et
al., 1997). Since then, Altschul et al. (1997) has introduced Gapped BLAST, which
allows for the generation of gapped alignments, making it necessary to initially find only
one rather than all the ungapped alignments in order to produce a significant result.
Although the Smith-Waterman search algorithm is more sensitive than the BLAST, it is
extremely computationally demanding, making it difficult to implement without special-
purpose computer hardware and software (Shpaer et al, 1996).

As more and more proteins are sequenced and characterized, most of them can be
grouped into a limited number of families on the basis of similarities in their sequences.
Proteins or protein domains belonging to a particular family generally share functional
attributes and are derived from a common ancestor. One database containing listings of
protein families and domains is PROSITE (http://www.expasy.ch/prosite/). PROSITE has
used patterns and profile matrices to identify over 1000 protein families or domains.

With the continual development of more and larger protein families and domains, it is
possible to examine how well the Gapped BLAST (GP), Ungapped BLAST (UG), and
Smith-Waterman (SW) algorithms perform in identifying all the members of these
families using a single starting protein for each family. The purpose of this study is to
compare the performance of these three algorithms and determine if any one of the

algorithms consistently outperforms the other two based on the protein family identifying
pattern or type.

Methods
Perl Scripts
The first perl script (Appendix 1A) was written to identify all the protein families or
domains listed within PROSITE (http://us.expasy.org/cgi-bin/prosite-list.pl) (Figure 1).
The second perl script (Appendix 1B) was then used to generate a list of every family
member associated with its identifying PROSITE cross-reference for each data entry. For
example, the LIM domain signature and profile would have two data entries, each
associated with a cross-reference (Figures 2 and 3).

The perl script then stored the amino acid sequence of the first true positive family
member identified on the cross-reference site and performed a Gapped BLAST,
Ungapped BLAST, and Smith-Waterman search using the Decypher server
(http://decypher.stanford.edu/index_by_algo.htm). The default settings were used in all
cases except to switch between Ungapped and Gapped BLAST, in the “Max Scores” and
“Max Alignments” (see below), and “Filter Query” which was switched to “on” for SW
to match the BLAST search default.

In order to evaluate the search results, a modification of the “missed@equivalence” point
(Pearson, 1995) was calculated. Briefly, for a particular data entry, the true positives and
false negatives together were used as the “gold standard” dataset. The total number of
true positives and false negatives was entered in the “Max Scores” field. If a protein was
found in either list, then, it was counted as a “hit”, and the total number of “hits” was
calculated for each search algorithm. In most cases, the number of “misses” was
equivalent to the number of unrelated sequences found in the search. However, in some
instances when using BLAST, the number of sequences located in the search was less
than the “Max Scores” value. Therefore, in order to compare the three algorithms, a
percent score was instead calculated based on (number of hits)/(total possible hits).

Analysis
For each data entry, the perl script output included the percent score for each search
method and a ranking of how the methods compared to each other (Figure 4). After every
protein family or domain was run through the perl script, the output was visually scanned
for 1) cases where one method outperforms one or both other methods by a large
percentage, 2) families which are extremely large (> 300 members), and 3) cases where
the searches seemingly have failed.

Members of the third class could further be subdivided into 1) cases where the percentage
was 0 for one or more the searches or 2) cases in which at least one member was found
for each search (see Results). For the former, rerunning the perl script often returned
different results (i.e. the Decypher server most likely timed out during the original
search); however in a few instances, rerunning still produced no results. Upon further
examination, these families proved to have amino acid sequences that were either too

short to perform searches on or had highly repetitive sequences which were filtered out so
that not even the original member was found.

For members of the second class (total = 33), each was run through the perl script a
second time with the “Filter Query” option turned to “off”. Finally, each member of the
second and third classes were looked up on the PROSITE site in order to examine their
pattern and entry description.

Results
General findings
The total number of protein families and domains listed on the PROSITE site is 1136. Of
these, 800 contain a single data entry while 336 contain multiple data entries. Overall, in
823 out of 1500 total data entries examined, all three search algorithms performed
equally well (Table 1A). In searches where the algorithms found unequal numbers of
family members, the SW algorithm performed the best in all combinations of the results,
GP second best, and UG worst (Table 1B). In the majority of families examined, all three
algorithms locate greater than 80% of the total “gold standard” proteins. Quite often, the
hit percentage was 100% for all three algorithms when families had few members (less
than 100). The largest observed family in which all three methods found all members was
PS00657 (104 out of 104), which is the Fork Head Family. Therefore, at a superficial
level, the algorithms are all performing quite well.

Class one
Class one families were instances where one algorithm outperformed one or both of the
other algorithms by a large percentage. Consistent with earlier results by Pearson (1995)
and Shpaer et al. (1996), each algorithm had certain protein families in which it
performed better than the others.

Upon examining the specific families in which GP or UG performed the best, no clear
pattern or family type could be identified that would explain why GP or UG performed
the best. Both lists included families that were characterized by short amino acid patterns
with and without gaps included in the signature patterns as well as families defined by a
domain matrix. The only consistent characteristic was that the families all had less than
100 members. When GP performed the best, the largest difference in performance was
with the Armadillo Repeat Family in which GP found 21 of 40 proteins versus 13 of 40
for both UG and SW. When UG was the best, the largest difference was with the Long
Hematopoietin Receptor, Soluble Alpha Chains Family signature, where UG found 15 of
19, SW 8 of 19, and GP 11 of 19.

As with GP and UG, when SW performed the best, there was no discernible pattern or
family type based on signature patterns and descriptions of the families. However, in
contrast to GP and UG, SW performed the best not only in small families but also in large
families as well. It was observed that as families began to contain more than 100
members, both GP and UG had more difficulty locating “gold standard” members while
SW performance did not suffer as greatly. In fact, the larger the family, the more likely it

was that SW performed better than UG or GP. Some examples of this contrast include
PS01132, the Actin Family, where SW finds 254 of 255 (99%), while UG finds only 164
(64%) and GP 162 (64%), a greater than 30% drop in performance, and PS00030, the
Eukaryotic RNA Recognition Motif Family where SW finds 213 of 297 (72%), GP 165
(56%), UG 145(49%), a greater than 20% drop.

Class two
When families had greater than 300 members SW overwhelmingly performed better than
both GP and UG. In all 33 cases where families contained more than 300 members, SW
outperformed both GP and UG by an average of 25% and 32%, respectively. Most
strikingly in the two families with over 1000 members, PS50262, the G-protein Coupled
Receptors Family (1209 members) and PS50011, the Protein Kinases Family (1330
members), SW finds over 900 members for both families, while UG finds only 456 and
503 and GP only 446 and 384. This represents a greater than 400 member difference
between SW and UG or GP.

In order to determine if filtering the query had a large effect on the performance of these
algorithms in the large families, all 33 families were rerun through the perl script with
“filter query” set to “off” and compared to the original search. In some cases, turning off
the filter option resulted in more hits, but in other cases, it resulted in less hits, reducing
the number of hits by as many as 52 in one case. Additionally, for many of the families,
one algorithm would perform better while the other two would perform worse or vice
versa. Therefore, removing the filter query option did not seem to have any discernible
consistent effect.

Class Three
Class three families included those which failed to produce a hit in one or more of the
algorithms (discussed in Methods) and those in which all three algorithms hit only a
small fraction of the total possible family members. For those in which only a small
fraction of members were found (most often just 1), there were a number of possible
explanations.

In some cases, the first member of the family matched more than one protein family
profile such as CRI4_MAIZE which comes from PS50050, the TNFR/NGFR Family but
also has a protein kinase domain. Therefore many of the highest scoring matches are to
other protein kinases rather than to the other TNFR/NGFR family members.

In other cases the first member was the only representative from an organism in that
family such as CWL1_SCHPO from PS50845, the Reticulon Family which is a protein
from Schizossaccharomyces pombe while the other nine members of the family are from
human, mouse or rat. Therefore, it is possible that although a pattern detectable by the
PROSITE search was maintained through evolution, there is not enough sequence
conservation to detect the other members by any of the three algorithms.

Still other cases were such that there may be other highly conserved members of the
family which may not be inputted into PROSITE yet. These other members had higher

scores than the “gold standard” members which brought the total hit percentage down.
MGSA_BACSU from PS01335, Methylglyoxal Synthase Active Site Family is one such
case.

Finally, not all cases could be deduced easily as to why the searches failed to produce
more than a few hits. They could be combinations of reasons which are beyond the scope
of this study.

Discussion and Conclusion
The goal of this study was to determine if there are any discernible patterns in the
performance of the Smith-Waterman, Gapped BLAST, and Ungapped BLAST
algorithms in finding all the members of the protein families from the PROSITE protein
database. Based on the limited analysis performed, there did not seem to be any patterns
associated with the cases in which GP or UG performed exceptionally compared to the
other searches. Although the PROSITE search patterns used to define a particular family
may contain numerous gaps, this did not seem to affect the performance of UG versus GP
in finding family members.

However, SW was consistently the best when the families were large (over 100). In cases
where there were over 300 members, SW was the always the best. Additionally SW was
the best overall in finding the most family members. Based on these results, in order to
find the most biologically significant hits with a given protein sequence, it is best to use
the SW algorithm. It would also be interesting to know if there were any proteins found
by GP or UG that were not found by SW and also whether a combination of the results by
all three is much better than SW alone.

Turning on or off the “filter query” option had variable results when used on the large
protein families. Although in some cases the algorithms made more matches, in others,
the results were much worse. Therefore, it is unclear as to whether or not the “filter”
option is beneficial when performing the searches.

Another consideration unaccounted for is the fact that the SW algorithm will report all
matches up to the number entered in the “Max Alignments” option. GP and UG, on the
other hand, will only report as many as have e-value scores less than the “Expectation”
cutoff (default is 10). Many of the SW hits may have p-values of 1, leading to more false
positives. A solution to this problem would be to use an unmodified missed@equivalence
which would take into account this variability.

Further detailed analysis of the families and member proteins may prove to yield patterns
not detected in this analysis and may warrant more study. Additionally, this search should
also be repeated with a different starting protein to determine the consistency of these
results.

These search algorithms are a good starting place when searching for homologous
proteins; however as demonstrated by the class three protein families, even if a protein is
a member of a family, the highest scoring hits may not be matches to other members of

the family. It would be prudent, therefore, to also make use of the many other
computational tools available, such as searching on PROSITE, BLOCKS, or PFAM for
conserved domains.

Although beyond the scope of this study, additional considerations that should be taken
into account include changing the gap opening and extension penalties, changing the
scoring matrices used, or adjusting the expectation value (Altschul et al., 1994). Also,
numerous other search algorithms based on SW or on BLAST have been proposed, such
as PSI-BLAST (Altschul et al., 1997) BALLAST (Plewniak et al., 2000), and SALSA
(Rognes and Seeberg, 1998). In addition, implementing methods such as generalized
affine gap costs (Altschul, 1998) may improve search performance. If any information
about the protein is known, such as membrane localization, there may also be specific
algorithm modifications available (Hedman et al., 2001), which could improve detection
of homologous proteins.

The overall goal in a study like this is the eventual improvement of the methods used in
protein similarity searches so as to find the most biologically significant hits. To that end,
any further analysis using the dataset generated from this study should be sure to keep
this in mind.

 PDOC00382 2 LIM domain signature and profile
 PDOC00924 2 NF-kappa-B/Rel/dorsal family signature and profile
 PDOC00302 2 MADS-box domain signature and profile
 PDOC50126 2 S1 domain profiles
 PDOC00972 3 T-box domain signatures and profile
 PDOC00479 1 TEA domain signature
 PDOC00624 1 Transcription factor TFIIB repeat signature
 PDOC00303 1 Transcription factor TFIID repeat signature
 PDOC00383 1 TFIIS zinc ribbon domain signature
 PDOC00991 1 TSC-22 / dip / bun family signature

Figure 1: Example of PROSITE family entries
Column one indicates the family accession number, column two indicates how many data
entries (patterns, rules and profiles/matrices) are described, and column three is a short
description of the family or domain.

LIM domain signature and profile

PROSITE cross-reference(s)

PS00478; LIM_DOMAIN_1
PS50023; LIM_DOMAIN_2

Documentation
Recently [1,2] a number of proteins have been found to contain a
conserved cysteine-rich domain of about 60 amino-acid residues. These
proteins are:

Rest of documentation omitted

Description of pattern(s) and/or profile(s)

Consensus pattern
C-x(2)-C-x(15,21)-[FYWH]-H-x(2)-[CH]-x(2)-C-x(2)-C-x(3)- [LIVMF] [The 5
C's and the H bind zinc]

Sequences known to
belong to this class
detected by the
pattern

ALL.

Other sequence(s)
detected in SWISS-
PROT

NONE.

Sequences known to
belong to this class
detected by the
profile

ALL.

Other sequence(s)
detected in SWISS-
PROT

3.

Note
this documentation entry is linked to both signature patterns and a profile. As the
profile is much more sensitive than the patterns, you should use it if you have
access to the necessary software tools to do so.

Last update

July 1999 / Text revised.

References
 References omitted

Copyright
This PROSITE entry is copyright by the Swiss Institute of Bioinformatics (SIB). There are no restrictions
on its use by non-profit institutions as long as its content is in no way modified and this statement is not
removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-
sib.ch/announce/ or email to license@isb-sib.ch).

Figure 2: Example of single family entry
The LIM domain signature and profile has two data entries, and therefore two different
cross-references are listed.

NiceSite View of PROSITE: PS00478

General information about the entry

Entry name LIM_DOMAIN_1

Accession number PS00478

Entry type PATTERN

Date
MAY-1991 (CREATED); NOV-1997 (DATA UPDATE); JUL-1998
(INFO UPDATE).

PROSITE documentation PDOC00382

Name and characterization of the entry
Description LIM domain signature.

Pattern C-x(2)-C-x(15,21)-[FYWH]-H-x(2)-[CH]-x(2)-C-x(2)-C-x(3)-[LIVMF].

Numerical results
• SWISS-PROT release number: 40.7, total number of sequence entries in that release: 103373.
• Total number of hits in SWISS-PROT: 213 hits in 99 different sequences
• Number of hits on proteins that are known to belong to the set under consideration: 213 hits in

99 different sequences
• Number of hits on proteins that could potentially belong to the set under consideration: 0 hits in

0 different sequences
• Number of false hits (on unrelated proteins): 0 hits in 0 different sequences
• Number of known missed hits: 6
• Number of partial sequences which belong to the set under consideration, but which are not hit

by the pattern or profile because they are partial (fragment) sequences: 1
• Precision (true hits / (true hits + false positives)): 100.00 %
• Recall (true hits / (true hits + false negatives)): 97.26 %

Comments
• Taxonomic range: Eukaryotes
• Maximum known number of repetitions of the pattern in a single protein: 4
• `Interesting' site in the pattern: 1,zinc

Rest of comments omitted

Cross-references

SWISS-PROT

True positive hits:
CRP1_HUMAN (P50238), CRP1_MOUSE (P04006), ISL2_CHICK (P53410),
LAS1_HUMAN (Q14847), LAS1_MOUSE (Q61792), LHX3_HUMAN
(Q9UBR4),
Rest of true positive hits omitted
False negative hits (sequences which belong to the set under consideration,
but which have not been picked up by the pattern or profile):
LH61_MOUSE (Q9R1R0), PDL1_HUMAN (O00151), PDL1_MOUSE
(O70400),
PDL1_RAT (P52944), Z185_HUMAN (O15231), Z185_MOUSE (Q62394)
`Potential' hits (partial sequences which belong to the set under
consideration, but which are not hit by the pattern or profile because they
are partial (fragment) sequences):

are partial (fragment) sequences):
LAS1_PIG (P80171)
Retrieve an alignment of SWISS-PROT true positive hits:

[Clustal format, color, condensed view] [Clustal format, color] [Clustal format,
plain text] [Fasta format]

PDB

[Detailed view]
1IML; 1A7I; 1QLI; 1CTL; 1G47;

Figure 3: Example of single data entry
The first LIM domain signature cross-reference is shown with the pattern used to locate
the family members. True positives and false negatives are listed at the bottom of the
entry and make up the “gold standard” for members of the family.

PS00290
SW found: 328 out of 366 percent: 0.896174863387978
Gapped BLAST found: 109 out of 366 percent: 0.297814207650273
Ungapped BLAST found: 120 out of 366 percent: 0.327868852459016
SW > UG > GP

Figure 4: Example of Perl output
The output from running the perl script on PS00290 shows that SW successfully finds
328 of 366 family members while GP only finds 109 and UG 120. In this case, SW is
better than UG, which, in turn, is better than GP.

Table 1: Comparison of performance between Smith-Waterman(SW), Ungapped
Blast(UG) and Gapped Blast(GP).
A B
SW > GP > UG 89 SW best alone 165
SW > UG > GP 76 GP best alone 75
GP > SW > UG 46 UG best alone 56
GP > UG > SW 29
UG > GP > SW 28 SW best or equal to best 409
UG > SW > GP 28 GP best or equal to best 276
SW = GP > UG 121 UG best or equal to best 219
SW = GP = UG 823
SW > GP = UG 67 SW worst alone 107
SW = UG > GP 56 GP worst alone 160
GP > SW = UG 30 UG worst alone 256
GP = UG > SW 50
UG > GP = SW 57 SW worst or equal to worst 194

GP worst or equal to worst 284
UG worst or equal to worst 353

Appendix 1
Perl Scripts Written:

A. First Script

#!/bin/perl -w

#This simple script takes as input the source code to
#http://us.expasy.org/cgi-bin/prosite-list.pl and parses it to make a
#list of the form: <Accession num> <num of data entries> <description>
#Please note that my Perl is extremely limited, so code is not very
#written.

use strict;
use LWP::UserAgent;

#this is the source code saved as a .txt file
my $input = 'prosite_pro_fam.txt';
my $count = 0;
my $flag1 = 0;
my $HREF = 'HREF';

open (FILE, $input);

foreach(<FILE>)
{
 my @test = '';
 my @test2 = '';
 @test[0] = 'B';
 @test2[0] = '';
 $count += 1;
 if ($count == 52)
 {$flag1 = 1;}

 if ($flag1 == 1)
 {

my @data = split ("<", $_);

@test = split (" ", @data[1]);
if (@test[0] =~ "A")
{
 @test2 = split ("=", @test[1]);

 if (@test2[0] =~ "HREF")
 {

my @data2 = split (">", @data[1]);
my @data3 = split (" ", @data[2]);
print "@data2[1] @data3[1] @data3[2]";
#$flag1 = 0;

}}}

}

B. Second Script
#!/bin/perl –w

#This code takes as input an accession number followed by the number of
data #entries followed by a description in a list format. This list can
be generated #by running the preceding perl script. This being the most
complex Perl code
#that I’ve ever written, it’s a bit unwieldy.

use strict;
use LWP::UserAgent;

use HTTP::Request::Common qw(GET);
use HTTP::Request::Common qw(POST);

my %name_fam;
my %name_gene;
my %name_num;
my @keynames = ();
my $counter = 0;
my $getfamcounter = 0;

#Hashes to store data
my %SW_results;
my %Gapped_results;
my %Ungapped_results;
my $compare;
my $gappedalignment;

#counters for SW vs UG vs GP
my $c1 = 0;
my $c2 = 0;
my $c3 = 0;
my $c4 = 0;
my $c5 = 0;
my $c6 = 0;
my $c7 = 0;
my $c8 = 0;
my $c9 = 0;
my $c10 = 0;
my $c11 = 0;
my $c12 = 0;
my $c13 = 0;

#this is the url which post goes to.
my $url = 'http://decypher2.stanford.edu/cgi-win/CGI.exe';

#test query seq
my $seq = '';
my $numproteins = 1;

my %cgi;

#main

{
 my $file = 'profams.txt';
 my $count1 = 0;
 my $count2 = 0;
 my $count3 = 0;
 my $html;

 open (FILE, $file);
 foreach(<FILE>)
 {

$count3 += 1;
my @data = split (" ", $_);
if ($data[1] > '1')
{
 $count1 += 1;
 my @site = split (" ", $data[0]);
 #print $site[1];
 my $html_name = "http://us.expasy.org/cgi-bin/get-prosite-

raw.pl?$site[0]";
 $html = getHTML($html_name);

 getmult($html);

}
else
{
 my @site = split (" ", $data[0]);
 #print $site[1];
 my $html_name = "http://us.expasy.org/cgi-bin/get-prosite-

raw.pl?$site[0]";
 $html = getHTML($html_name);
 my $next_site = parse_site($html);

 $html_name = "http://us.expasy.org/cgi-bin/get-prosite-
raw.pl?$next_site";

 #print $html_name, "\n";
 $html = getHTML($html_name);
 getfam($html);
 $count2 += 1;
}

 }

 foreach(@keynames)
 {

$numproteins = $name_num{$_};

if ($numproteins > 1)
{
 print $_, "\n";

 #print $name_gene{$_};
 $seq = $name_gene{$_};

 #print $name_fam{$_}, "\n";
 $compare = $name_fam{$_};

 $SW_results{$_} = runsmithwaterman();
 $gappedalignment = 'T';
 $Gapped_results{$_} = runBLASTP();
 $gappedalignment = 'F';
 $Ungapped_results{$_} = runBLASTP();

 my $swpercent = ($SW_results{$_}/$name_num{$_});
 print "SW found: $SW_results{$_} out of $name_num{$_}

\t\tpercent: $swpercent\n";
 my $gppercent = ($Gapped_results{$_}/$name_num{$_});
 print "Gapped BLAST found: $Gapped_results{$_} out of

$name_num{$_}\tpercent: $gppercent\n";
 my $ugpercent = ($Ungapped_results{$_}/$name_num{$_});
 print "Ungapped BLAST found: $Ungapped_results{$_} out of

$name_num{$_}\tpercent: $ugpercent\n";

 if (($swpercent > $gppercent) && ($gppercent > $ugpercent))
 {

print "SW > GP > UG\n";
$c1++;

 }
 if (($swpercent > $ugpercent) && ($gppercent < $ugpercent))
 {

print "SW > UG > GP\n";
$c2++;

 }
 if (($swpercent < $gppercent) && ($swpercent > $ugpercent))
 {

print "GP > SW > UG\n";
$c3++;

 }
 if (($ugpercent < $gppercent) && ($swpercent < $ugpercent))
 {

print "GP > UG > SW\n";
$c4++;

 }
 if (($ugpercent > $gppercent) && ($gppercent > $swpercent))
 {

print "UG > GP > SW\n";
$c5++;

 }
 if (($ugpercent > $swpercent) && ($gppercent < $swpercent))
 {

print "UG > SW > GP\n";
$c6++;

 }

 if (($swpercent == $gppercent) && ($gppercent > $ugpercent))
 {

print "SW = GP > UG\n";
$c7++;

 }
 if (($swpercent == $gppercent) && ($gppercent == $ugpercent))
 {

print "SW = GP = UG\n";
$c8++;

 }
 if (($swpercent > $gppercent) && ($gppercent == $ugpercent))
 {

print "SW > GP = UG\n";
$c9++;

 }
 if (($swpercent == $ugpercent) && ($gppercent < $ugpercent))
 {

print "SW = UG > GP\n";
$c10++;

 }
 if (($swpercent < $gppercent) && ($swpercent == $ugpercent))
 {

print "GP > SW = UG\n";
$c11++;

 }
 if (($ugpercent == $gppercent) && ($ugpercent > $swpercent))
 {

print "GP = UG > SW\n";
$c12++;

 }
 if (($ugpercent > $gppercent) && ($gppercent == $swpercent))
 {

print "UG > GP = SW\n";
$c13++;

 }
}

 }
 print "SW > GP > UG : $c1\n";
 print "SW > UG > GP : $c2\n";
 print "GP > SW > UG : $c3\n";
 print "GP > UG > SW : $c4\n";
 print "UG > GP > SW : $c5\n";
 print "UG > SW > GP : $c6\n";
 print "SW = GP > UG : $c7\n";
 print "SW = GP = UG : $c8\n";
 print "SW > GP = UG : $c9\n";
 print "SW = UG > GP : $c10\n";
 print "GP > SW = UG : $c11\n";
 print "GP = UG > SW : $c12\n";
 print "UG > GP = SW : $c13\n";
 print "number of singles, multiples, total: $count2, $count1,
$count3\n";
}

#This subroutine parses the html site when there is only a single
family entry
sub parse_site
{
 my $text = shift();
 my $flag1 = 0;
 my @lines = split("\n", $text);
 my @value;
 my @value2;

 foreach(@lines)
 {

 if ($flag1 == 1)
 {

#print $_;
@value = split('{', $_);
#print $value[1];
@value2 = split(";", $value[1]);
#print $value2[0];

 }
 $flag1++;
 }
 return $value2[0];
}

#This subroutine sets the values for running a Smith-Waterman search
sub runsmithwaterman
{
%cgi =(

 Algorithm => 'SW',
 QueryType => 'AA',
 TargetType => 'AA',
 QuerySearch => '1',
 OutputFormat => 'MAXSCORE PERCENTAGE',
 Comment => 'Smith-Waterman Similarity Search',

 ReplyVia => 'BROWSER',
 ReplyFormat => 'TEXT',
 AATargetSet => 'SWISSPROT',
 QueryFormat => 'FASTA/PEARSON',

 QueryText => $seq,
 QueryFilter => 'T',
 MatchCharacter => '1',
 MaxScores => $numproteins,
 AAMatrix => 'BLOSUM62.MAA',
 MaxAlignments => '0',
 OpenPenalty => '12',
 Threshold => '1',
 ExtendPenalty => '2',
 AlignmentThreshold => '20',
 FieldRecord => 'FIELDRECORD',
 command => 'start');

my $temp = runseq();
return parse_SW($temp);

}

#This subroutines sets the values for running a BLAST search
sub runBLASTP
{
%cgi =(
 Algorithm => 'BLASTP',
 QueryType => 'AA',
 Comment => 'NCBI BLASTP Similarity Search',
 ReplyVia => 'BROWSER',

 ReplyFormat => 'TEXT',
 BlastTargetSet => 'SWISSPROT',
 QueryFormat => 'FASTA/PEARSON',
 QueryText => $seq,
 QueryFilter => 'T',
 AAMatrix => 'BLOSUM62.MAA',
 MaxScores => $numproteins,
 Expectation => '10',
 MaxAlignments => '0',
 ExtensionThreshold => '0 (use default)',
 GappedAlignment => $gappedalignment,
 WordSize => '0 (use default)',
 OpenPenalty => '0 (use default)',
 ExtendPenalty => '0 (use default)',
 Threshold => '1',
 ShowGI => 'T',
 FieldRecord => 'FIELDRECORD',

 command => 'start');

my $temp = runseq();
return parse_blast($temp);

}

#subroutine that runs the post and returns the search results
sub runseq
{
my %cgiArgs = %cgi;

#this runs POST and returns an html
my $html = &doCGI($url, \%cgiArgs);

}

#subroutine to get family with multiple data entries
sub getmult {
 my $text = shift();
 my @lines = split(/\n/, $text);
 my $flag1 = 0;
 my $flag2 = 0;

 foreach(@lines)
 {

if ($flag1 == 1)
{
my @value = split('{', $_);
if ($value[1] =~ /BEGIN/)
{$flag1 = 0;}

if ($flag1 == 1)
{
 my @value2 = split(";", $value[1]);

 #print $value2[0];

 my $html_name = "http://us.expasy.org/cgi-bin/get-prosite-
raw.pl?$value2[0]";

 my $html = getHTML($html_name);
 #print $html, "here!!!getmult\n";
 getfam($html);
}

 }
 if ($flag2 == 0)
 {

$flag2 = 1;
$flag1 = 1;

 }}
}

#Parses output from a blast search using the decypher server
sub parse_blast
{
 my $text = shift();
 my $flag1 = 0;
 my @lines = split(/\n/, $text);
 my $flag2 = 0;
 my $bigcount = 0;
 my $flag3 = 0;
 my $flag4 = 0;

 foreach(@lines)
 {

if ($_ =~ /Database: SwissProt Release 40.14/)
 {

$flag1 = 0;
 }
if ($flag1 == 1)
{
 my @records = split (/\s+/, $_);
 #print $records[1], "\n";

 #This checks to see if the protein found in the search is a
member
 #of the gold standard list.

 if($records[1])
 {

if ($compare =~ /$records[1]/i)
 {

#print $records[1];
++$bigcount;

 }
 $flag2++;
 if ($flag2 == $numproteins)
 {

$flag1 = 0;
 }
}
}

if ($flag3 == 1)
{

 $flag1 = 1;
 $flag3 = 0;
}
if ($_ =~ /^Sequences/)
{
 $flag3 = 1;
}

 }
 return $bigcount;
}

#Parses the output using a smith-waterman search on the decypher server
sub parse_SW
{
 my $text = shift();
 my $flag1 = 0;
 my @lines = split(/\n/, $text);
 my $flag2 = 0;
 my $bigcount = 0;
 my $flag3 = 0;

 foreach(@lines)
 {

if ($flag1 == 1)
{
 #print $_, "\n";
 my @records = split (/\s+/, $_);
 #print $records[8], "\n";

 #This checks to see if the protein found in the search is a
member
 #of the gold standard list.
 if ($compare =~ /$records[8]/i)

 {
#print $records[8];
++$bigcount;

 }
 $flag2++;
 if ($flag2 == $numproteins)
 {

$flag1 = 0;
 }
}
if ($flag3 == 1)
{
 $flag1 = 1;
 $flag3 = 0;
}
if ($_ =~ /DESCRIPTION/)
{

 $flag3 = 1;
}

 }
 return $bigcount;
}

#subroutine to get all the protein members of the family and store as a
list
sub getfam {

 $getfamcounter++;
 #print "getfam!";
 my $proname = '';
 my $text = shift();
 my @words;
 my @words2;
 my @words3;
 my $family_mem = '';
 my $flag1 = 0;
 my $seq;
 my $flag2 = 0;

 my @lines = split(/\n/, $text);
 #print @lines;

 foreach(@lines){
if ($_ =~ /^AC /)
{
 #print $_;
 @words = split (/\s+/, $_);
 #print @words;
 $proname = $words[1];
 chop($proname);
 #print $proname, "\n";
 $flag1 = 1;
 $name_gene{$proname} = '';
 #print "@keynames keynames\n";
 push (@keynames, $proname);
 $counter = 0;
}
 if ($_ =~ /DR /)
 {

 @words = split ("; ", $_);
 @words2 = (0,0,0,0,0,0,0,0,0);
 @words2 = split (" ", $words[0]);
 #print $words[2], "\n";
 @words3 = (0,0,0,0,0,0,0,0,0);
 if ($words[2])
 {
 @words3 = split (";", $words[2]);
 }
 #print @words3, "\n";
 $family_mem .= truepos($words2[1]);
 $family_mem .= truepos($words[1]);
 $family_mem .= truepos($words3[0]);
 #print "$words2[1]\n$words[1]\n$words3[0]\n";

 if ($flag1 == 1)
 {
 my @words4 = split ", ", $words2[1];
 my $html_site = $words4[0];
 my $html = getHTML("http://us.expasy.org/cgi-bin/get-

sprot-fasta?$html_site");

 $flag1 = 0;

 my @fasta_seq = split ('.', $html);
 $name_gene{$proname} = $html;
 }

 }
 }
 $name_fam{$proname} = $family_mem;
 $name_num{$proname} = $counter;
#print $name_fam{$proname};
#print $name_gene{$proname};
}

sub truepos {
my $text2 = shift();
my @words4;
if ($text2)
{
 @words4 = split (", ", $text2);
}
my $value = '';
if($words4[2])
{
 if ($words4[2] =~ /T/)
 {

$value = $words4[0];
$counter++

 }

 if ($words4[2] =~ /N/)
 {

$value = $words4[0];
$counter++

 }
}
return $value;
}

my $ua = undef;
sub getHTML {
 my $url = shift();
 unless ($ua) {

$ua = new LWP::UserAgent;
$ua->agent("QuoteBot/0.1 " . $ua->agent);

 }
 # Create a request the Object Oriented way:
 my $req = HTTP::Request->new(GET => $url);

 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # Check the outcome of the response
 if ($res->is_success) {

return $res->content();
 } else {

print STDERR"Bad luck this time\n" . $res->as_string();

 }}
sub doCGI {

#METHOD="POST" ENCTYPE="multipart/form-data"
 my $url = shift();

 my %args = %{shift()};

 unless ($ua) {

$ua = new LWP::UserAgent;

$ua->agent("BlatBot/0.1 " . $ua->agent);
 }

 # Create a request
my $req = new HTTP::Request POST => $url;
$req->content_type('multipart/form-data');
$req->content('match=www&errors=0');

 #print "here in post";
 my $req = POST $url, [%args];
 # Pass request to the user agent and get a response back
 my $res = $ua->request($req);

 # Check the outcome of the response
 if ($res->is_success) {

return $res->content();
 } else {

print STDERR"Bad luck this time\n" . $res->as_string();
 }
}

#END

References
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and D.J. Lipman. (1990). Basic Local

Alignment Search Tool.
Altschul, S.F., Boguski, M.S., Gish, W., and J.C. Wooton. (1994) Issues in searching

molecular sequence databases. Nature Genetics. 6:119-129.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and D.J.

Lipman. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nuc. Acid Res. 25(17):3389-3402.

Altschul, S.F. (1998). Generalized affine Gap costs for protein sequence alignment.
PROTEINS: Structure, Function and Genetics. 32:88-96.

Hedman, M., Deloof, H., Von Heijne, G., and A.. Elofsson. (2001). Improved detection
of homologous membrane proteins by inclusion of information from topology
predictions. Protein Sci. 11:652-658.

Pearson, W. R. (1995). Comparison of methods for searching protein sequence databases.
Protein Sci 4(6): 1145-60.

Pearson, W. R. (1996). Effective Protein Sequence Comparison. Methods in Enzymology.
R. Doolittle. New York, Academic Press. 266: 227-258.

Pearson, W. R. (1997). Identifying distantly related protein sequences. Comput Appl
Biosci 13(4): 325-32.

Plewniak, F., Thompson, J.D., and O. Poch. (2000). Ballast: blast post-processing based
on locally conserved elements. Bioinformatics. 16(9):750-759.

Rognes, T. and E. Seeberg. (1998). SALSA: improved protein database searching by a
new algorithm for assembly of sequence fragments into gapped alignments.
Bioinformatics. 14(10):839-845.

Shpaer, E. G. (1997). GeneAssist. Smith-Waterman and other database similarity
searches and identification of motifs. Methods Mol Biol 70: 173-87.

Shpaer, E. G., M. Robinson, D. Yee, et al. (1996). Sensitivity and selectivity in protein
similarity searches: a comparison of Smith-Waterman in hardware to BLAST and
FASTA. Genomics 38(2): 179-91.

Smith, T.F. and M.S. Waterman. (1981). Identification of common molecular
subsequences. J. Mol. Biol. 147:195-197.

